Global Solution and Asymptotic Behaviour for a Wave Equation type p-Laplacian with Memory

C. Raposo, A. Cattai, J. Ribeiro
{"title":"Global Solution and Asymptotic Behaviour for a Wave Equation type p-Laplacian with Memory","authors":"C. Raposo, A. Cattai, J. Ribeiro","doi":"10.30538/PSRP-OMA2018.0025","DOIUrl":null,"url":null,"abstract":"In this work we study the global solution, uniqueness and asymptotic behaviour of the nonlinear equation utt − ∆pu = ∆u− g ∗ ∆u where ∆pu is the nonlinear p-Laplacian operator, p ≥ 2 and g ∗ ∆u is a memory damping. The global solution is constructed by means of the Faedo-Galerkin approximations taking into account that the initial data is in appropriated set of stability created from the Nehari manifold and the asymptotic behavior is obtained by using a result of P. Martinez based on new inequality that generalizes the results of Haraux and Nakao. Mathematics Subject Classification: 35B40, 35L70, 35A01, 74DXX.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/PSRP-OMA2018.0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this work we study the global solution, uniqueness and asymptotic behaviour of the nonlinear equation utt − ∆pu = ∆u− g ∗ ∆u where ∆pu is the nonlinear p-Laplacian operator, p ≥ 2 and g ∗ ∆u is a memory damping. The global solution is constructed by means of the Faedo-Galerkin approximations taking into account that the initial data is in appropriated set of stability created from the Nehari manifold and the asymptotic behavior is obtained by using a result of P. Martinez based on new inequality that generalizes the results of Haraux and Nakao. Mathematics Subject Classification: 35B40, 35L70, 35A01, 74DXX.
一类具有记忆的波动方程型p-拉普拉斯算子的全局解和渐近性质
在这项工作中,我们研究了非线性方程utt−∆pu=∆u−g*∆u的全局解、唯一性和渐近性,其中∆pu是非线性p-拉普拉斯算子,p≥2,g*∆u是记忆阻尼。考虑到初始数据在由Nehari流形建立的适当的稳定性集合中,利用Faedo-Galerkin近似构造了全局解,并利用P.Martinez基于推广Haraux和Nakao结果的新不等式的结果获得了全局解的渐近性态。数学学科分类:35B40、35L70、35A01、74DXX。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信