Davide Dell’Anna, N. Alechina, F. Dalpiaz, M. Dastani, B. Logan
{"title":"Data-Driven Revision of Conditional Norms in Multi-Agent Systems","authors":"Davide Dell’Anna, N. Alechina, F. Dalpiaz, M. Dastani, B. Logan","doi":"10.1613/jair.1.13683","DOIUrl":null,"url":null,"abstract":"In multi-agent systems, norm enforcement is a mechanism for steering the behavior of individual agents in order to achieve desired system-level objectives. Due to the dynamics of multi-agent systems, however, it is hard to design norms that guarantee the achievement of the objectives in every operating context. Also, these objectives may change over time, thereby making previously defined norms ineffective. In this paper, we investigate the use of system execution data to automatically synthesise and revise conditional prohibitions with deadlines, a type of norms aimed at prohibiting agents from exhibiting certain patterns of behaviors. We propose DDNR (Data-Driven Norm Revision), a data-driven approach to norm revision that synthesises revised norms with respect to a data set of traces describing the behavior of the agents in the system. We evaluate DDNR using a state-of-the-art, off-the-shelf urban traffic simulator. The results show that DDNR synthesises revised norms that are significantly more accurate than the original norms in distinguishing adequate and inadequate behaviors for the achievement of the system-level objectives.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.13683","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
In multi-agent systems, norm enforcement is a mechanism for steering the behavior of individual agents in order to achieve desired system-level objectives. Due to the dynamics of multi-agent systems, however, it is hard to design norms that guarantee the achievement of the objectives in every operating context. Also, these objectives may change over time, thereby making previously defined norms ineffective. In this paper, we investigate the use of system execution data to automatically synthesise and revise conditional prohibitions with deadlines, a type of norms aimed at prohibiting agents from exhibiting certain patterns of behaviors. We propose DDNR (Data-Driven Norm Revision), a data-driven approach to norm revision that synthesises revised norms with respect to a data set of traces describing the behavior of the agents in the system. We evaluate DDNR using a state-of-the-art, off-the-shelf urban traffic simulator. The results show that DDNR synthesises revised norms that are significantly more accurate than the original norms in distinguishing adequate and inadequate behaviors for the achievement of the system-level objectives.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.