Design of Monolithic Bi-Layer High-Z PAL-Si Hard X-ray CMOS Image Sensors for Quantum Efficiency Enhancement

Q3 Physics and Astronomy
Eldred Lee, K. D. Larkin, Xin Yue, Zhehui Wang, E. Fossum, Jifeng Liu
{"title":"Design of Monolithic Bi-Layer High-Z PAL-Si Hard X-ray CMOS Image Sensors for Quantum Efficiency Enhancement","authors":"Eldred Lee, K. D. Larkin, Xin Yue, Zhehui Wang, E. Fossum, Jifeng Liu","doi":"10.3390/instruments7030024","DOIUrl":null,"url":null,"abstract":"This article experimentally investigates the inception of an innovative hard X-ray photon energy attenuation layer (PAL) to advance high-energy X-ray detection (20–50 keV). A bi-layer design with a thin film high-Z PAL on the top and Si image sensor on the bottom has previously demon-strated quantum yield enhancement via computational methods by the principle of photon energy down conversion (PEDC), where high-energy X-ray photon energies are attenuated via inelastic scattering down to ≤10 keV, which is suitable for efficient photoelectric absorption by Si. Quantum yield enhancement has been experimentally confirmed via a preliminary demonstration using PAL-integrated Si-based CMOS image sensors (Si CIS). Furthermore, substituting the high-Z PAL with a lower-Z material—Sn—and alternatively coupling it with a conventional scintillator ma-terial—Lutetium-yttrium oxyorthosilicate (LYSO)—have been compared to demonstrate the most prominent efficacy of monolithic integration of high-Z PAL on Si CIS to detect hard X-rays, paving the way for next-generation high-energy X-ray detection methods.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments7030024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

This article experimentally investigates the inception of an innovative hard X-ray photon energy attenuation layer (PAL) to advance high-energy X-ray detection (20–50 keV). A bi-layer design with a thin film high-Z PAL on the top and Si image sensor on the bottom has previously demon-strated quantum yield enhancement via computational methods by the principle of photon energy down conversion (PEDC), where high-energy X-ray photon energies are attenuated via inelastic scattering down to ≤10 keV, which is suitable for efficient photoelectric absorption by Si. Quantum yield enhancement has been experimentally confirmed via a preliminary demonstration using PAL-integrated Si-based CMOS image sensors (Si CIS). Furthermore, substituting the high-Z PAL with a lower-Z material—Sn—and alternatively coupling it with a conventional scintillator ma-terial—Lutetium-yttrium oxyorthosilicate (LYSO)—have been compared to demonstrate the most prominent efficacy of monolithic integration of high-Z PAL on Si CIS to detect hard X-rays, paving the way for next-generation high-energy X-ray detection methods.
用于提高量子效率的单片双层高Z PAL Si硬X射线CMOS图像传感器的设计
本文通过实验研究了一种创新的硬x射线光子能量衰减层(PAL)的开始,以推进高能x射线探测(20-50 keV)。一种双层设计,上面是薄膜高z PAL,下面是Si图像传感器,之前已经通过光子能量下转换(PEDC)原理的计算方法证明了量子产率的提高,其中高能x射线光子能量通过非弹性散射衰减到≤10 keV,适合于Si的高效光电吸收。通过使用pal集成的硅基CMOS图像传感器(Si CIS)的初步演示,实验证实了量子产率的增强。此外,用低z材料sn代替高z PAL,或者与传统闪烁体材料LYSO耦合,已经证明了高z PAL在Si CIS上的单片集成检测硬x射线的最突出效果,为下一代高能x射线检测方法铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Instruments
Instruments Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
0.00%
发文量
70
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信