Reconstructing lost plates of the panthalassa ocean through Paleomagnetic data from circum-pacific accretionary orogens

IF 1.9 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
L. Boschman, D. Hinsbergen, C. Langereis, K. Flores, P. Kamp, D. Kimbrough, H. Ueda, S. H. Lagemaat, Erik van der Wiel, W. Spakman
{"title":"Reconstructing lost plates of the panthalassa ocean through Paleomagnetic data from circum-pacific accretionary orogens","authors":"L. Boschman, D. Hinsbergen, C. Langereis, K. Flores, P. Kamp, D. Kimbrough, H. Ueda, S. H. Lagemaat, Erik van der Wiel, W. Spakman","doi":"10.2475/06.2021.08","DOIUrl":null,"url":null,"abstract":"The Panthalassa Ocean, which surrounded the late Paleozoic-early Mesozoic Pangea supercontinent, was underlain by multiple tectonic plates that have since been lost to subduction. In this study, we develop an approach to reconstruct plate motions of this subducted lithosphere utilizing paleomagnetic data from accreted Ocean Plate Stratigraphy (OPS). We first establish the boundaries of the Panthalassa domain by using available Indo-Atlantic plate reconstructions and restorations of complex plate boundary deformation at circum-Panthalassa trenches. We reconstruct the Pacific Plate and its conjugates, the Farallon, Phoenix, and Izanagi plates, back to 190 Ma using marine magnetic anomaly records of the modern Pacific. Then, we present new and review published paleomagnetic data from OPS exposed in the accretionary complexes of Cedros Island (Mexico), the Santa Elena Peninsula (Costa Rica), the North Island of New Zealand, and Japan. These data provide paleolatitudinal plate motion components of the Farallon, Phoenix and Izanagi plates, and constrain the trajectories of these plates from their spreading ridges towards the trenches in which they subducted. For 83 to 150 Ma, we use two independent mantle frames to connect the Panthalassa plate system to the Indo-Atlantic plate system and test the feasibility of this approach with the paleomagnetic data. For times prior to 150 Ma, and as far back as Permian time, we reconstruct relative and absolute Panthalassa plate motions such that divergence is maintained between the Izanagi, Farallon and Phoenix plates, convergence is maintained with Pangean continental margins in Japan, Mexico and New Zealand, and paleomagnetic constraints are met. The reconstruction approach developed here enables data-based reconstruction of oceanic plates and plate boundaries in the absence of marine magnetic anomaly data or mantle reference frames, using Ocean Plate Stratigraphy, paleo-magnetism, and constraints on the nature of circum-oceanic plate boundaries. Such an approach is a crucial next step towards quantitative reconstruction of the currently largely unknown tectonic evolution of the Earth's oceanic domains in deep geological time.","PeriodicalId":7660,"journal":{"name":"American Journal of Science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2475/06.2021.08","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

Abstract

The Panthalassa Ocean, which surrounded the late Paleozoic-early Mesozoic Pangea supercontinent, was underlain by multiple tectonic plates that have since been lost to subduction. In this study, we develop an approach to reconstruct plate motions of this subducted lithosphere utilizing paleomagnetic data from accreted Ocean Plate Stratigraphy (OPS). We first establish the boundaries of the Panthalassa domain by using available Indo-Atlantic plate reconstructions and restorations of complex plate boundary deformation at circum-Panthalassa trenches. We reconstruct the Pacific Plate and its conjugates, the Farallon, Phoenix, and Izanagi plates, back to 190 Ma using marine magnetic anomaly records of the modern Pacific. Then, we present new and review published paleomagnetic data from OPS exposed in the accretionary complexes of Cedros Island (Mexico), the Santa Elena Peninsula (Costa Rica), the North Island of New Zealand, and Japan. These data provide paleolatitudinal plate motion components of the Farallon, Phoenix and Izanagi plates, and constrain the trajectories of these plates from their spreading ridges towards the trenches in which they subducted. For 83 to 150 Ma, we use two independent mantle frames to connect the Panthalassa plate system to the Indo-Atlantic plate system and test the feasibility of this approach with the paleomagnetic data. For times prior to 150 Ma, and as far back as Permian time, we reconstruct relative and absolute Panthalassa plate motions such that divergence is maintained between the Izanagi, Farallon and Phoenix plates, convergence is maintained with Pangean continental margins in Japan, Mexico and New Zealand, and paleomagnetic constraints are met. The reconstruction approach developed here enables data-based reconstruction of oceanic plates and plate boundaries in the absence of marine magnetic anomaly data or mantle reference frames, using Ocean Plate Stratigraphy, paleo-magnetism, and constraints on the nature of circum-oceanic plate boundaries. Such an approach is a crucial next step towards quantitative reconstruction of the currently largely unknown tectonic evolution of the Earth's oceanic domains in deep geological time.
利用环太平洋增生造山带的古地磁数据重建潘塔拉萨洋的失落板块
潘塔拉萨洋环绕着晚古生代-早中生代的盘古超大陆,其下方是多个构造板块,这些板块后来因俯冲而消失。在这项研究中,我们开发了一种利用增生海洋板块地层学(OPS)的古地磁数据重建俯冲岩石圈板块运动的方法。我们首先通过使用现有的印度-大西洋板块重建和潘塔拉萨海沟复杂板块边界变形的恢复,建立潘塔拉萨域的边界。我们利用现代太平洋的海洋磁异常记录重建了190 Ma前的太平洋板块及其共轭物Farallon、Phoenix和Izanagi板块。然后,我们介绍了在塞德罗斯岛(墨西哥)、圣埃琳娜半岛(哥斯达黎加)、新西兰北岛和日本的增生杂岩中暴露的OPS的新的和已发表的古地磁数据。这些数据提供了Farallon、Phoenix和Izanagi板块的古纬度板块运动分量,并限制了这些板块从扩张山脊到俯冲海沟的轨迹。对于83至150 Ma,我们使用两个独立的地幔框架将潘塔拉萨板块系统连接到印度-大西洋板块系统,并用古地磁数据测试了这种方法的可行性。对于150 Ma之前的时间,以及早在二叠纪的时间,我们重建了潘塔拉萨板块的相对和绝对运动,使得伊扎纳吉板块、法拉隆板块和菲尼克斯板块之间保持分歧,与日本、墨西哥和新西兰的盘古大陆边缘保持会聚,并满足古地磁约束。这里开发的重建方法能够在没有海洋磁异常数据或地幔参考系的情况下,利用海洋板块地层学、古地磁和环洋板块边界性质的约束,对海洋板块和板块边界进行基于数据的重建。这种方法是定量重建地球海洋在深部地质时代的构造演化的关键下一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American Journal of Science
American Journal of Science 地学-地球科学综合
CiteScore
5.80
自引率
3.40%
发文量
17
审稿时长
>12 weeks
期刊介绍: The American Journal of Science (AJS), founded in 1818 by Benjamin Silliman, is the oldest scientific journal in the United States that has been published continuously. The Journal is devoted to geology and related sciences and publishes articles from around the world presenting results of major research from all earth sciences. Readers are primarily earth scientists in academia and government institutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信