Tail dependence estimation based on smooth estimation of diagonal section

IF 0.7 Q2 MATHEMATICS
Selim Orhun Susam
{"title":"Tail dependence estimation based on smooth estimation of diagonal section","authors":"Selim Orhun Susam","doi":"10.31801/cfsuasmas.988076","DOIUrl":null,"url":null,"abstract":"This paper is mainly developed around the diagonal section which is strongly related to tail dependence coefficients as defined in Nelsen [19]. Hence, we propose a flexible method for estimating tail dependence coefficients based on the new smooth estimation of the diagonal section based on the Bernstein polynomial approximation. To assess the performance of the new estimators we conduct the Monte-Carlo simulation study. As a result of the simulation study, both estimators perform satisfactory performance. Also, the estimation methods are illustrated by real data examples.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.988076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is mainly developed around the diagonal section which is strongly related to tail dependence coefficients as defined in Nelsen [19]. Hence, we propose a flexible method for estimating tail dependence coefficients based on the new smooth estimation of the diagonal section based on the Bernstein polynomial approximation. To assess the performance of the new estimators we conduct the Monte-Carlo simulation study. As a result of the simulation study, both estimators perform satisfactory performance. Also, the estimation methods are illustrated by real data examples.
基于对角截面光滑估计的尾部相关性估计
本文主要围绕与Nelsen[19]中定义的尾部相关系数密切相关的对角线截面展开。因此,我们提出了一种基于Bernstein多项式近似的对角截面平滑估计的尾部相关系数的灵活估计方法。为了评估新估计器的性能,我们进行了蒙特卡洛模拟研究。作为模拟研究的结果,两个估计器都表现出令人满意的性能。并以实际数据为例说明了估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信