NEIMARK-SACKER BIFURCATION AND CONTROL OF CHAOTIC BEHAVIOR IN A DISCRETE-TIME PLANT-HERBIVORE SYSTEM

IF 0.3 Q4 MULTIDISCIPLINARY SCIENCES
Ö. Gümüs, A. Selvam, R. Janagaraj
{"title":"NEIMARK-SACKER BIFURCATION AND CONTROL OF CHAOTIC BEHAVIOR IN A DISCRETE-TIME PLANT-HERBIVORE SYSTEM","authors":"Ö. Gümüs, A. Selvam, R. Janagaraj","doi":"10.46939/j.sci.arts-22.3-a03","DOIUrl":null,"url":null,"abstract":"In this study, the dynamics of a discrete-time plant-herbivore model obtained using the forward Euler method are discussed. The existence of fixed points is investigated. A topological classification is made to examine the behavior of the positive fixed point where the plant and the herbivore coexist. In addition, the existence conditions and direction of Neimark-Sacker bifurcation of the model are investigated using bifurcation theory. Hybrid control method is applied to control the chaos caused by Neimark-Sacker bifurcation. Examples including time series figures, bifurcation figures, phase portraits and maximum Lyapunov exponent are provided to support our theoretical results.","PeriodicalId":54169,"journal":{"name":"Journal of Science and Arts","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46939/j.sci.arts-22.3-a03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the dynamics of a discrete-time plant-herbivore model obtained using the forward Euler method are discussed. The existence of fixed points is investigated. A topological classification is made to examine the behavior of the positive fixed point where the plant and the herbivore coexist. In addition, the existence conditions and direction of Neimark-Sacker bifurcation of the model are investigated using bifurcation theory. Hybrid control method is applied to control the chaos caused by Neimark-Sacker bifurcation. Examples including time series figures, bifurcation figures, phase portraits and maximum Lyapunov exponent are provided to support our theoretical results.
离散植物-食草动物系统混沌行为的NEIMARK-SACKER分岔与控制
在本研究中,讨论了使用正向欧拉方法获得的离散时间植物-食草动物模型的动力学。研究了不动点的存在性。对植物和食草动物共存的正不动点的行为进行了拓扑分类。此外,利用分岔理论研究了该模型Neimark-Sacker分岔的存在条件和方向。将混合控制方法应用于控制由Neimark-Sacker分岔引起的混沌。给出了时间序列图、分岔图、相位图和最大李雅普诺夫指数等例子来支持我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Science and Arts
Journal of Science and Arts MULTIDISCIPLINARY SCIENCES-
自引率
25.00%
发文量
57
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信