Using climate information as covariates to improve nonstationary flood frequency analysis in Brazil

IF 2.8 3区 环境科学与生态学 Q2 WATER RESOURCES
Gabriel Anzolin, P. Chaffe, J. Vrugt, A. Aghakouchak
{"title":"Using climate information as covariates to improve nonstationary flood frequency analysis in Brazil","authors":"Gabriel Anzolin, P. Chaffe, J. Vrugt, A. Aghakouchak","doi":"10.1080/02626667.2023.2182212","DOIUrl":null,"url":null,"abstract":"ABSTRACT Climatic drivers of floods have been widely used to improve nonstationary flood frequency analysis (FFA). However, the forecast ability of nonstationary FFA with out-of-sample prediction has not been comprehensively evaluated. We use 379 flood records from Brazil to assess the ability of process-informed nonstationary models for out-of-sample FFA using the generalized extreme value (GEV) distribution. Five drivers of floods are used as covariates: annual temperature, El Nino Southern Oscillation, annual rainfall, annual maximum rainfall, and annual maximum soil moisture content. Our results reveal that a nonstationary model is preferable when there is a significant correlation between flood and climate covariates in both the training period and full record. The rainfall-based covariates lead to better out-of-sample nonstationary FFA models. These findings highlight that using climate information as covariates in nonstationary FFA is a promising approach for estimating future floods and, hence, better infrastructure design, risk assessment and disaster preparedness.","PeriodicalId":55042,"journal":{"name":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02626667.2023.2182212","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Climatic drivers of floods have been widely used to improve nonstationary flood frequency analysis (FFA). However, the forecast ability of nonstationary FFA with out-of-sample prediction has not been comprehensively evaluated. We use 379 flood records from Brazil to assess the ability of process-informed nonstationary models for out-of-sample FFA using the generalized extreme value (GEV) distribution. Five drivers of floods are used as covariates: annual temperature, El Nino Southern Oscillation, annual rainfall, annual maximum rainfall, and annual maximum soil moisture content. Our results reveal that a nonstationary model is preferable when there is a significant correlation between flood and climate covariates in both the training period and full record. The rainfall-based covariates lead to better out-of-sample nonstationary FFA models. These findings highlight that using climate information as covariates in nonstationary FFA is a promising approach for estimating future floods and, hence, better infrastructure design, risk assessment and disaster preparedness.
利用气候信息作为协变量改进巴西非平稳洪水频率分析
洪水的气候驱动因素已被广泛用于改进非平稳洪水频率分析(FFA)。然而,样本外预测的非平稳FFA的预测能力尚未得到全面评价。我们使用巴西的379条洪水记录,使用广义极值(GEV)分布来评估样本外FFA的过程知情非平稳模型的能力。洪水的五个驱动因素被用作协变量:年温度、厄尔尼诺南方涛动、年降雨量、年最大降雨量和年最大土壤含水量。我们的结果表明,当训练期和完整记录中洪水和气候协变量之间存在显著相关性时,非平稳模型是优选的。基于降雨量的协变量导致了更好的样本外非平稳FFA模型。这些发现强调,在非平稳FFA中使用气候信息作为协变量是一种很有前途的方法,可以估计未来的洪水,从而更好地进行基础设施设计、风险评估和备灾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
11.40%
发文量
144
审稿时长
9.8 months
期刊介绍: Hydrological Sciences Journal is an international journal focused on hydrology and the relationship of water to atmospheric processes and climate. Hydrological Sciences Journal is the official journal of the International Association of Hydrological Sciences (IAHS). Hydrological Sciences Journal aims to provide a forum for original papers and for the exchange of information and views on significant developments in hydrology worldwide on subjects including: Hydrological cycle and processes Surface water Groundwater Water resource systems and management Geographical factors Earth and atmospheric processes Hydrological extremes and their impact Hydrological Sciences Journal offers a variety of formats for paper submission, including original articles, scientific notes, discussions, and rapid communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信