Nonenzymatic glucose detection using Au nanodots decorated Cu2O nanooctahedrons

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dexiang Chen, Kaifeng Xue, Huaiqiang Liu, Binbin Yao, Aixin Sun, Chenchen Liu, Pinhua Zhang, Guangliang Cui
{"title":"Nonenzymatic glucose detection using Au nanodots decorated Cu2O nanooctahedrons","authors":"Dexiang Chen, Kaifeng Xue, Huaiqiang Liu, Binbin Yao, Aixin Sun, Chenchen Liu, Pinhua Zhang, Guangliang Cui","doi":"10.1177/18479804211012889","DOIUrl":null,"url":null,"abstract":"Au nanodots decorated Cu2O nanooctahedrons were fabricated by a facile liquid-phase process combined with a galvanic replacement reaction for nonenzyme glucose detection. A simple rapid test strip based on the nanooctahedrons was proposed to evaluate the possibility of commercial application in nonenzymatic glucose detection. This test strip shows excellent response toward glucose. Linear response was obtained over a concentration ranging from 0.05 mM to 15 mM, and the detection accuracy is 0.05 mM. The good detection performance in selectivity, stability, and feasibility proving the great potential application in human blood glucose monitoring. This study demonstrated the possibility of a high-performance nonenzyme glucose test strip based on metal-oxide nanostructures decorated by catalysts.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/18479804211012889","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/18479804211012889","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Au nanodots decorated Cu2O nanooctahedrons were fabricated by a facile liquid-phase process combined with a galvanic replacement reaction for nonenzyme glucose detection. A simple rapid test strip based on the nanooctahedrons was proposed to evaluate the possibility of commercial application in nonenzymatic glucose detection. This test strip shows excellent response toward glucose. Linear response was obtained over a concentration ranging from 0.05 mM to 15 mM, and the detection accuracy is 0.05 mM. The good detection performance in selectivity, stability, and feasibility proving the great potential application in human blood glucose monitoring. This study demonstrated the possibility of a high-performance nonenzyme glucose test strip based on metal-oxide nanostructures decorated by catalysts.
用金纳米点修饰Cu2O纳米八面体检测非酶促葡萄糖
采用简单液相法结合电替代反应制备了金纳米点修饰的Cu2O纳米八面体,用于非酶葡萄糖检测。提出了一种基于纳米八面体的简单快速试纸条,以评估其在非酶葡萄糖检测中的商业应用可能性。该试纸条对葡萄糖有很好的反应。在0.05 mM ~ 15 mM的浓度范围内具有良好的线性响应,检测精度为0.05 mM,具有良好的选择性、稳定性和可行性,在人体血糖监测中具有很大的应用潜力。本研究证明了用催化剂修饰金属氧化物纳米结构制备高性能无酶葡萄糖试纸条的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials and Nanotechnology
Nanomaterials and Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.20
自引率
21.60%
发文量
13
审稿时长
15 weeks
期刊介绍: Nanomaterials and Nanotechnology is a JCR ranked, peer-reviewed open access journal addressed to a cross-disciplinary readership including scientists, researchers and professionals in both academia and industry with an interest in nanoscience and nanotechnology. The scope comprises (but is not limited to) the fundamental aspects and applications of nanoscience and nanotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信