Biomechanical modeling in surgical treatment of a patient with true lumbar spondylolisthesis

Q3 Medicine
А. Л. Кудяшев, Владимир Васильевич Хоминец, Андрей Васильевич Теремшонок, Е. Б. Нагорный, С. Ю. Стадниченко, А. В. Доль, Д. В. Иванов, И. В. Кириллова, Л. Ю. Коссович, А. Л. Ковтун
{"title":"Biomechanical modeling in surgical treatment of a patient with true lumbar spondylolisthesis","authors":"А. Л. Кудяшев, Владимир Васильевич Хоминец, Андрей Васильевич Теремшонок, Е. Б. Нагорный, С. Ю. Стадниченко, А. В. Доль, Д. В. Иванов, И. В. Кириллова, Л. Ю. Коссович, А. Л. Ковтун","doi":"10.14531/2018.4.87-94","DOIUrl":null,"url":null,"abstract":"Objective. To assess the results of clinical approbation of individual finite-element biomechanical model of a patient’s spino-pelvic complex with subsequent modeling of the best option of surgical treatment. Material and Methods. A biomechanical modeling of changes in the sagittal profile of a patient with degenerative disease of the lumbosacral spine, bilateral spondylolysis, and unstable grade 2 spondylolisthesis of the L4 vertebra was performed. The developed biomechanical model made it possible to assess the characteristics of the stress-strain state of the spinal motion segments aroused due to development of the disease. Within the built biomechanical model of the patient’s spino-pelvic complex, a corrective operation was further modeled that assumed a preservation of harmonious profile of sagittal spino-pelvic relationships. Post-correction characteristics of the stress-strain state of spinal motion segments were studied and compared with preoperative parameters of the biomechanical model. Results. Using methods of biomechanics and computer modeling allowed to calculate the stress-strain state of the lumbosacral spine under static load for two options of fixation and intervertebral cage implantation at the L4–L5 level: four transpedicular screws (L4–L5 vertebrae) and six transpedicular screws (L3–L4–L5 vertebrae). The simulation results showed that neither metal implants, nor elements of the lumbosacral spine experienced critical stresses and deformations that could lead to the destruction and instability of the implant. Conclusion. The developed individual biomechanical finite-element solid model of the spine and pelvis allowed for biomechanical justification of prerequisites for the formation and further progression of degenerative changes in spinal motion segments associated with violations of the sagittal profile due to grade 2 spondylolisthesis of the L4 vertebra. The model built on the results of radiological examination biomechanically substantiated the best option of corrective spine surgery allowing to minimize stresses and deformations by choosing reasonable magnitude of correction of sagittal spino-pelvic parameters and configuration of transpedicular system.","PeriodicalId":37253,"journal":{"name":"Hirurgia Pozvonochnika","volume":"15 1","pages":"87-94"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hirurgia Pozvonochnika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14531/2018.4.87-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

Abstract

Objective. To assess the results of clinical approbation of individual finite-element biomechanical model of a patient’s spino-pelvic complex with subsequent modeling of the best option of surgical treatment. Material and Methods. A biomechanical modeling of changes in the sagittal profile of a patient with degenerative disease of the lumbosacral spine, bilateral spondylolysis, and unstable grade 2 spondylolisthesis of the L4 vertebra was performed. The developed biomechanical model made it possible to assess the characteristics of the stress-strain state of the spinal motion segments aroused due to development of the disease. Within the built biomechanical model of the patient’s spino-pelvic complex, a corrective operation was further modeled that assumed a preservation of harmonious profile of sagittal spino-pelvic relationships. Post-correction characteristics of the stress-strain state of spinal motion segments were studied and compared with preoperative parameters of the biomechanical model. Results. Using methods of biomechanics and computer modeling allowed to calculate the stress-strain state of the lumbosacral spine under static load for two options of fixation and intervertebral cage implantation at the L4–L5 level: four transpedicular screws (L4–L5 vertebrae) and six transpedicular screws (L3–L4–L5 vertebrae). The simulation results showed that neither metal implants, nor elements of the lumbosacral spine experienced critical stresses and deformations that could lead to the destruction and instability of the implant. Conclusion. The developed individual biomechanical finite-element solid model of the spine and pelvis allowed for biomechanical justification of prerequisites for the formation and further progression of degenerative changes in spinal motion segments associated with violations of the sagittal profile due to grade 2 spondylolisthesis of the L4 vertebra. The model built on the results of radiological examination biomechanically substantiated the best option of corrective spine surgery allowing to minimize stresses and deformations by choosing reasonable magnitude of correction of sagittal spino-pelvic parameters and configuration of transpedicular system.
生物力学模型在真腰椎滑脱患者手术治疗中的应用
客观的评估患者脊柱-骨盆复合体的个体有限元生物力学模型的临床认可结果,以及随后的最佳手术治疗选择模型。材料和方法。对一名腰骶椎退行性疾病、双侧峡部裂和L4脊椎不稳定2级滑脱患者的矢状面变化进行生物力学建模。所开发的生物力学模型使评估由于疾病发展而引起的脊柱运动节段的应力-应变状态特征成为可能。在建立的患者脊柱-骨盆复合体的生物力学模型中,进一步对矫正手术进行了建模,假设矢状位脊柱-骨盆关系保持和谐。研究了脊柱运动节段矫正后应力应变状态的特征,并与生物力学模型的术前参数进行了比较。后果使用生物力学和计算机建模的方法,可以在L4–L5水平上计算两种固定和椎间盘植入方案在静载荷下腰骶棘的应力-应变状态:四个经椎弓根螺钉(L4–L6椎骨)和六个经椎弓根螺丝(L3–L4–L4椎骨)。模拟结果表明,无论是金属植入物,还是腰骶棘的元件,都没有经历可能导致植入物破坏和不稳定的临界应力和变形。结论所开发的脊柱和骨盆的个体生物力学有限元实体模型允许生物力学证明脊柱运动节段退行性变化的形成和进一步发展的先决条件,这些变化与L4脊椎2级滑脱引起的矢状面侵犯有关。基于放射学检查结果建立的模型从生物力学角度证实了脊柱矫正手术的最佳选择,通过选择合理的矢状棘骨-骨盆参数和经椎弓根系统配置的矫正幅度,可以最大限度地减少应力和变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Hirurgia Pozvonochnika
Hirurgia Pozvonochnika Medicine-Anesthesiology and Pain Medicine
CiteScore
0.60
自引率
0.00%
发文量
24
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信