Uncertainty analysis of geodata derived from digital map processing

IF 4.3 1区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Cyrill Delfgou, Nikolaos Bakogiannis, P. Laube
{"title":"Uncertainty analysis of geodata derived from digital map processing","authors":"Cyrill Delfgou, Nikolaos Bakogiannis, P. Laube","doi":"10.1080/13658816.2023.2206890","DOIUrl":null,"url":null,"abstract":"Abstract Digital map processing promises computational methods for the extraction of geographic features from scanned historical maps. Such workflows are error prone, with potential spatial uncertainty arising from the initial map production, the processing of the feature extraction, and the eventual application and use of the extracted features. This paper investigates several types of uncertainty emerging the extraction of hydrological features from historical topographic maps for the monitoring of change in ecological indicators describing river ecosystems, such as shoreline length, river sinuosity or number of river nodes and islands. Computational procedures have been developed to simulate various typical, expected sources of error. In a series of experiments investigating three different typical river types, the errors were systematically varied and increased using Monte Carlo simulation whilst studying the errors’ impacts on the derived ecological indicators. The results suggest that production-oriented uncertainties emerging the initial map generalization and simplification process have bigger impacts than processing-oriented uncertainties, such as errors from manual digitizing. The results further indicate that the derivation of ecological indicators from braided rivers is more error prone than from straight or meandering rivers, and that topological indicators such as river sinuosity are more robust than indicators derived from the features’ geometry.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"1667 - 1691"},"PeriodicalIF":4.3000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2206890","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Digital map processing promises computational methods for the extraction of geographic features from scanned historical maps. Such workflows are error prone, with potential spatial uncertainty arising from the initial map production, the processing of the feature extraction, and the eventual application and use of the extracted features. This paper investigates several types of uncertainty emerging the extraction of hydrological features from historical topographic maps for the monitoring of change in ecological indicators describing river ecosystems, such as shoreline length, river sinuosity or number of river nodes and islands. Computational procedures have been developed to simulate various typical, expected sources of error. In a series of experiments investigating three different typical river types, the errors were systematically varied and increased using Monte Carlo simulation whilst studying the errors’ impacts on the derived ecological indicators. The results suggest that production-oriented uncertainties emerging the initial map generalization and simplification process have bigger impacts than processing-oriented uncertainties, such as errors from manual digitizing. The results further indicate that the derivation of ecological indicators from braided rivers is more error prone than from straight or meandering rivers, and that topological indicators such as river sinuosity are more robust than indicators derived from the features’ geometry.
数字地图处理中地理数据的不确定性分析
数字地图处理为从扫描的历史地图中提取地理特征提供了计算方法。这样的工作流程很容易出错,潜在的空间不确定性来自于最初的地图制作、特征提取的处理以及提取的特征的最终应用和使用。本文研究了从历史地形图中提取水文特征以监测描述河流生态系统的生态指标变化时出现的几种不确定性,如海岸线长度、河流弯曲度或河流节点和岛屿的数量。已经开发了计算程序来模拟各种典型的、预期的误差来源。在对三种典型河流类型进行的一系列实验中,利用蒙特卡罗模拟方法对误差进行了系统的变化和增大,同时研究了误差对衍生生态指标的影响。结果表明,在初始地图概化和简化过程中出现的生产导向的不确定性比手工数字化误差等加工导向的不确定性影响更大。结果进一步表明,从辫状河流中提取生态指标比从直河或曲流河流中提取生态指标更容易出错,而河流曲度等拓扑指标比从地形特征中提取生态指标更稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
7.00%
发文量
81
审稿时长
9 months
期刊介绍: International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信