{"title":"Is There a Clinical Future for IDO1 Inhibitors After the Failure of Epacadostat in Melanoma?","authors":"Benoit J. Van den Eynde, N. van Baren, J. Baurain","doi":"10.1146/annurev-cancerbio-030419-033635","DOIUrl":null,"url":null,"abstract":"Indoleamine-2,3 dioxygenase 1 (IDO1) contributes to tumor immunosuppression by enzymatically degrading tryptophan, which is required for T cell activity, and producing kynurenine. Small-molecule inhibitors, such as epacadostat, have been developed to block IDO1 activity. In preclinical models, they can restore antitumoral T cell immunity and synergize with immune checkpoint inhibitors or cancer vaccines. Based on encouraging clinical results in early phase trials, a randomized phase III study (ECHO-301/KN-252) was launched in metastatic melanoma to test the benefit of adding epacadostat to the reference pembrolizumab therapy. The result was negative. We briefly review the clinical trials that investigated epacadostat in cancer patients and discuss possible explanations for this negative result. We end by suggesting paths to resume clinical development of compounds targeting the IDO1 pathway, which in our view remains an attractive target for cancer immunotherapy.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-cancerbio-030419-033635","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Cancer Biology-Series","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-cancerbio-030419-033635","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 104
Abstract
Indoleamine-2,3 dioxygenase 1 (IDO1) contributes to tumor immunosuppression by enzymatically degrading tryptophan, which is required for T cell activity, and producing kynurenine. Small-molecule inhibitors, such as epacadostat, have been developed to block IDO1 activity. In preclinical models, they can restore antitumoral T cell immunity and synergize with immune checkpoint inhibitors or cancer vaccines. Based on encouraging clinical results in early phase trials, a randomized phase III study (ECHO-301/KN-252) was launched in metastatic melanoma to test the benefit of adding epacadostat to the reference pembrolizumab therapy. The result was negative. We briefly review the clinical trials that investigated epacadostat in cancer patients and discuss possible explanations for this negative result. We end by suggesting paths to resume clinical development of compounds targeting the IDO1 pathway, which in our view remains an attractive target for cancer immunotherapy.
期刊介绍:
The Annual Review of Cancer Biology offers comprehensive reviews on various topics within cancer research, covering pivotal and emerging areas in the field. As our understanding of cancer's fundamental mechanisms deepens and more findings transition into targeted clinical treatments, the journal is structured around three main themes: Cancer Cell Biology, Tumorigenesis and Cancer Progression, and Translational Cancer Science. The current volume of this journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, ensuring all articles are published under a CC BY license.