$4$-quasinormal subgroups of prime order

IF 0.7 Q2 MATHEMATICS
S. Stonehewer
{"title":"$4$-quasinormal subgroups of prime order","authors":"S. Stonehewer","doi":"10.22108/IJGT.2018.113482.1510","DOIUrl":null,"url":null,"abstract":"‎Generalizing the concept of quasinormality‎, ‎a subgroup $H$ of a group $G$ is said to be 4-quasinormal in $G$ if‎, ‎for all cyclic subgroups $K$ of $G$‎, ‎$langle H,Krangle=HKHK$‎. ‎An intermediate concept would be 3-quasinormality‎, ‎but in finite $p$-groups‎ - ‎our main concern‎ - ‎this is equivalent to quasinormality‎. ‎Quasinormal subgroups have many interesting properties and it has been shown that some of them can be extended to 4-quasinormal subgroups‎, ‎particularly in finite‎ ‎$p$-groups‎. ‎However‎, ‎even in the smallest case‎, ‎when $H$ is a 4-quasinormal subgroup of order $p$ in a finite $p$-group $G$‎, ‎precisely how $H$ is embedded in $G$‎ ‎is not immediately obvious‎. ‎Here we consider one of these questions regarding the commutator subgroup $[H,G]$‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2018-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2018.113482.1510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

‎Generalizing the concept of quasinormality‎, ‎a subgroup $H$ of a group $G$ is said to be 4-quasinormal in $G$ if‎, ‎for all cyclic subgroups $K$ of $G$‎, ‎$langle H,Krangle=HKHK$‎. ‎An intermediate concept would be 3-quasinormality‎, ‎but in finite $p$-groups‎ - ‎our main concern‎ - ‎this is equivalent to quasinormality‎. ‎Quasinormal subgroups have many interesting properties and it has been shown that some of them can be extended to 4-quasinormal subgroups‎, ‎particularly in finite‎ ‎$p$-groups‎. ‎However‎, ‎even in the smallest case‎, ‎when $H$ is a 4-quasinormal subgroup of order $p$ in a finite $p$-group $G$‎, ‎precisely how $H$ is embedded in $G$‎ ‎is not immediately obvious‎. ‎Here we consider one of these questions regarding the commutator subgroup $[H,G]$‎.
$4$-素阶的拟正规子群
‎拟正规性概念的推广‎, ‎群$G$的子群$H$称为$G$中的4-拟正规,如果‎, ‎对于$G的所有循环子群$K$$‎, ‎$langle H,Krangle=香港$‎. ‎一个中间概念是3-拟正规‎, ‎但是在有限的$p$-群中‎ - ‎我们主要关心的问题‎ - ‎这相当于拟正态性‎. ‎拟正规子群具有许多有趣的性质,并证明了其中一些性质可以推广到4-拟正规子群‎, ‎特别是在有限‎ ‎$p$-组‎. ‎然而‎, ‎即使在最小的情况下‎, ‎当$H$是有限$p$-群$G中$p$阶的4-拟正规子群时$‎, ‎$H$是如何嵌入$G的$‎ ‎不是很明显‎. ‎这里我们考虑关于交换子群$[H,G]的一个问题$‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信