M. Tahir, G. Zaman, Syed Inayat Ali Shah, S. Muhammad, S. Hussain, M. Ishaq
{"title":"The stability analysis and control transmission of mathematical model for Ebola Virus","authors":"M. Tahir, G. Zaman, Syed Inayat Ali Shah, S. Muhammad, S. Hussain, M. Ishaq","doi":"10.30538/psrp-oma2019.0042","DOIUrl":null,"url":null,"abstract":"Abstract: Mathematical modeling of infectious diseases has progressed dramatically over the past four decades and continues to flourish at the nexus of mathematics, epidemiology, and infectious diseases research. Now recognized as a valuable tool, mathematical models are being integrated into the public health decision-making process more than ever before. In this article, a mathematical model of Ebola virus which is named as SEIVR (susceptible, exposed, infected, vaccinated, recovered) model is considered. First, we formulate the model and present the basic properties of the proposed model. Then, basic reproductive number is obtained by using the next-generation matrix approach. Furthermore, the sensitivity analysis of R0 is also discussed, all the endemic equilibrium points related to the disease are derived, a condition to investigate all possible equilibria of the model in terms of the basic reproduction number is obtained. In last, numerical simulation is presented with and without vaccination or control for the proposed model.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2019.0042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract: Mathematical modeling of infectious diseases has progressed dramatically over the past four decades and continues to flourish at the nexus of mathematics, epidemiology, and infectious diseases research. Now recognized as a valuable tool, mathematical models are being integrated into the public health decision-making process more than ever before. In this article, a mathematical model of Ebola virus which is named as SEIVR (susceptible, exposed, infected, vaccinated, recovered) model is considered. First, we formulate the model and present the basic properties of the proposed model. Then, basic reproductive number is obtained by using the next-generation matrix approach. Furthermore, the sensitivity analysis of R0 is also discussed, all the endemic equilibrium points related to the disease are derived, a condition to investigate all possible equilibria of the model in terms of the basic reproduction number is obtained. In last, numerical simulation is presented with and without vaccination or control for the proposed model.