Feature extraction and matching combined with depth information in visual simultaneous localization and mapping

IF 2.3 4区 计算机科学 Q2 Computer Science
Yunpeng Sun, Xiaoli Li
{"title":"Feature extraction and matching combined with depth information in visual simultaneous localization and mapping","authors":"Yunpeng Sun, Xiaoli Li","doi":"10.1177/17298806231158298","DOIUrl":null,"url":null,"abstract":"Estimating the camera trajectories is very important for the performance of visual simultaneous localization and mapping. However, visual simultaneous localization and mapping systems based on RGB image are generally not robust in complex situations such as low-textures or large illumination variations. In order to solve this problem, more environmental information is added by introducing depth information, and a feature extraction and matching algorithm combining depth information is proposed. In this article, firstly, the intrinsic mechanism that depth image is used to extract and match feature points is discussed. Then depth information and appearance information are comprehensively considered to extract and describe feature points. Finally, the matching problem of feature points is transformed into a regression and classification problem, with which a matching model is presented in a data-driven way. Experimental results show that our algorithm has better distribution uniformity and matching accuracy and can effectively improve the trajectory accuracy and drift degree of the simultaneous localization and mapping system.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806231158298","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating the camera trajectories is very important for the performance of visual simultaneous localization and mapping. However, visual simultaneous localization and mapping systems based on RGB image are generally not robust in complex situations such as low-textures or large illumination variations. In order to solve this problem, more environmental information is added by introducing depth information, and a feature extraction and matching algorithm combining depth information is proposed. In this article, firstly, the intrinsic mechanism that depth image is used to extract and match feature points is discussed. Then depth information and appearance information are comprehensively considered to extract and describe feature points. Finally, the matching problem of feature points is transformed into a regression and classification problem, with which a matching model is presented in a data-driven way. Experimental results show that our algorithm has better distribution uniformity and matching accuracy and can effectively improve the trajectory accuracy and drift degree of the simultaneous localization and mapping system.
视觉同步定位与映射中结合深度信息的特征提取与匹配
相机轨迹的估计对于视觉同步定位和映射的性能非常重要。然而,基于RGB图像的视觉同时定位和映射系统在诸如低纹理或大的照明变化的复杂情况下通常是不鲁棒的。为了解决这一问题,通过引入深度信息来增加更多的环境信息,并提出了一种结合深度信息的特征提取与匹配算法。本文首先讨论了深度图像用于特征点提取和匹配的内在机制。然后综合考虑深度信息和外观信息来提取和描述特征点。最后,将特征点的匹配问题转化为回归分类问题,以数据驱动的方式提出了匹配模型。实验结果表明,该算法具有较好的分布均匀性和匹配精度,能够有效地提高同时定位和映射系统的轨迹精度和漂移度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
65
审稿时长
6 months
期刊介绍: International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信