On the α-connections and the α-conformal equivalence on statistical manifolds

Q2 Mathematics
Khadidja Addad, S. Ouakkas
{"title":"On the α-connections and the α-conformal equivalence on statistical manifolds","authors":"Khadidja Addad, S. Ouakkas","doi":"10.1108/ajms-12-2020-0126","DOIUrl":null,"url":null,"abstract":"PurposeIn this paper, we give some properties of the α-connections on statistical manifolds and we study the α-conformal equivalence where we develop an expression of curvature R¯ for ∇¯ in relation to those for ∇ and ∇^.Design/methodology/approachIn the first section of this paper, we prove some results about the α-connections of a statistical manifold where we give some properties of the difference tensor K and we determine a relation between the curvature tensors; this relation is a generalization of the results obtained in [1]. In the second section, we introduce the notion of α-conformal equivalence of statistical manifolds treated in [1, 3], and we construct some examples.FindingsWe give some properties of the difference tensor K and we determine a relation between the curvature tensors; this relation is a generalization of the results obtained in [1]. In the second section, we introduce the notion of α-conformal equivalence of statistical manifolds, we give the relations between curvature tensors and we construct some examples.Originality/valueWe give some properties of the difference tensor K and we determine a relation between the curvature tensors; this relation is a generalization of the results obtained in [1]. In the second section, we introduce the notion of α-conformal equivalence of statistical manifolds, we give the relations between curvature tensors and we construct some examples.","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ajms-12-2020-0126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeIn this paper, we give some properties of the α-connections on statistical manifolds and we study the α-conformal equivalence where we develop an expression of curvature R¯ for ∇¯ in relation to those for ∇ and ∇^.Design/methodology/approachIn the first section of this paper, we prove some results about the α-connections of a statistical manifold where we give some properties of the difference tensor K and we determine a relation between the curvature tensors; this relation is a generalization of the results obtained in [1]. In the second section, we introduce the notion of α-conformal equivalence of statistical manifolds treated in [1, 3], and we construct some examples.FindingsWe give some properties of the difference tensor K and we determine a relation between the curvature tensors; this relation is a generalization of the results obtained in [1]. In the second section, we introduce the notion of α-conformal equivalence of statistical manifolds, we give the relations between curvature tensors and we construct some examples.Originality/valueWe give some properties of the difference tensor K and we determine a relation between the curvature tensors; this relation is a generalization of the results obtained in [1]. In the second section, we introduce the notion of α-conformal equivalence of statistical manifolds, we give the relations between curvature tensors and we construct some examples.
统计流形上的α-连接和α-共形等价
目的给出统计流形上α-连接的一些性质,并研究了α-共形等价,在此等价中给出了∇¯的曲率R¯相对于∇和∇^的曲率R¯的表达式。在本文的第一部分中,我们证明了统计流形的α-连接的一些结果,其中给出了差分张量K的一些性质,并确定了曲率张量之间的关系;这个关系是[1]中所得结果的推广。在第二节中,我们引入了[1,3]中处理过的统计流形的α-共形等价的概念,并构造了一些例子。我们给出了差分张量K的一些性质,并确定了曲率张量之间的关系;这个关系是[1]中所得结果的推广。在第二节中,我们引入了统计流形的α-保形等价的概念,给出了曲率张量之间的关系并构造了一些例子。独创性/价值我们给出了差分张量K的一些性质,并确定了曲率张量之间的关系;这个关系是[1]中所得结果的推广。在第二节中,我们引入了统计流形的α-保形等价的概念,给出了曲率张量之间的关系并构造了一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信