Linear regression for Poisson count data: a new semi-analytical method with applications to COVID-19 events

IF 1.3 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
M. Bonamente
{"title":"Linear regression for Poisson count data: a new semi-analytical method with applications to COVID-19 events","authors":"M. Bonamente","doi":"10.3389/fams.2023.1112937","DOIUrl":null,"url":null,"abstract":"This study presents the application of a new semi-analytical method of linear regression for Poisson count data to COVID-19 events. The regression is based on the maximum-likelihood solution for the best-fit parameters presented in an earlier publication, and this study introduces a simple analytical solution for the covariance matrix that completes the problem of linear regression with Poisson data for one independent variable. The analytical nature of both parameter estimates and their covariance matrix is made possible by a convenient factorization of the linear model proposed by J. Scargle. The method makes use of the asymptotic properties of the Fisher information matrix, whose inverse provides the covariance matrix. The combination of simple analytical methods to obtain both the maximum-likelihood estimates of the parameters and their covariance matrix constitutes a new and convenient method for the linear regression of Poisson-distributed count data, which are of common occurrence across a variety of fields. A comparison between this maximum-likelihood linear regression method for Poisson data and two alternative methods often used for the regression of count data—the ordinary least–square regression and the χ2 regression—is provided with the application of these methods to the analysis of recent COVID-19 count data. The study also discusses the relative advantages and disadvantages among these methods for the linear regression of Poisson count data.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2023.1112937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the application of a new semi-analytical method of linear regression for Poisson count data to COVID-19 events. The regression is based on the maximum-likelihood solution for the best-fit parameters presented in an earlier publication, and this study introduces a simple analytical solution for the covariance matrix that completes the problem of linear regression with Poisson data for one independent variable. The analytical nature of both parameter estimates and their covariance matrix is made possible by a convenient factorization of the linear model proposed by J. Scargle. The method makes use of the asymptotic properties of the Fisher information matrix, whose inverse provides the covariance matrix. The combination of simple analytical methods to obtain both the maximum-likelihood estimates of the parameters and their covariance matrix constitutes a new and convenient method for the linear regression of Poisson-distributed count data, which are of common occurrence across a variety of fields. A comparison between this maximum-likelihood linear regression method for Poisson data and two alternative methods often used for the regression of count data—the ordinary least–square regression and the χ2 regression—is provided with the application of these methods to the analysis of recent COVID-19 count data. The study also discusses the relative advantages and disadvantages among these methods for the linear regression of Poisson count data.
泊松计数数据的线性回归:一种应用于新冠肺炎事件的新的半分析方法
本研究介绍了泊松计数数据线性回归的一种新的半分析方法在新冠肺炎事件中的应用。回归基于早期出版物中提出的最佳拟合参数的最大似然解,本研究介绍了协方差矩阵的简单分析解,该解完成了一个自变量的泊松数据线性回归问题。通过J.Scargle提出的线性模型的方便因子分解,参数估计及其协方差矩阵的分析性质成为可能。该方法利用Fisher信息矩阵的渐近性质,其逆矩阵提供了协方差矩阵。将获得参数的最大似然估计及其协方差矩阵的简单分析方法相结合,构成了泊松分布计数数据线性回归的一种新的方便方法,这种方法在各个领域都很常见。将泊松数据的这种最大似然线性回归方法与两种常用的计数数据回归方法(普通最小二乘回归和x2回归)进行比较,并将这些方法应用于最近新冠肺炎计数数据的分析。研究还讨论了这些方法在泊松计数数据线性回归中的相对优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Applied Mathematics and Statistics
Frontiers in Applied Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.90
自引率
7.10%
发文量
117
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信