Simulation of Nonlinear Free Surface Waves using a Fixed Grid Method

IF 1.3 4区 工程技术 Q4 MECHANICS
†. A.Ebrahimi, B. Boroomand
{"title":"Simulation of Nonlinear Free Surface Waves using a Fixed Grid Method","authors":"†. A.Ebrahimi, B. Boroomand","doi":"10.47176/jafm.16.10.1802","DOIUrl":null,"url":null,"abstract":"The simulation of nonlinear surface waves is of significant importance in safety studies of fluid containers and reservoirs. In this paper, nonlinear free surface flows are simulated using a fixed grid method which employs local exponential basis functions (EBFs). Assuming the flow to be inviscid and irrotational, the velocity potential Laplace’s equation is spatially discretized and solved by considering the nonlinear Bernoulli’s equation for irrotational flow as the boundary condition on the free surface. The nonlinear boundary conditions are imposed through a semi-implicit iterative time marching. The fixed grid feature of the method, based on a Lagrangian description of fluid flow, allows for retaining the portion of the discretization performed in the first time step for the bulk of the fluid. Thus, the portion which pertains to the regions near the moving boundaries is reprocessed during the time marching. The accuracy and efficiency of the existing solution is shown by simulating various problems such as liquid sloshing induced by external excitation of the reservoir or initial deformed shape of liquid, seiche phenomena and solitary wave propagation in a basin with constant depth or with a step, and comparing the results with those which are analytically available or those from available codes such as Abaqus. The proposed method shows far better stability of the results when compared with those of Abaqus which sometimes exhibit divergence after a relatively large number of time steps. For instance, in the propagation of the considered solitary wave in an infinite-like domain problem, the wave height is calculated by the maximum error of 1.6% and 9% using the present method and Abaqus, respectively.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.10.1802","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The simulation of nonlinear surface waves is of significant importance in safety studies of fluid containers and reservoirs. In this paper, nonlinear free surface flows are simulated using a fixed grid method which employs local exponential basis functions (EBFs). Assuming the flow to be inviscid and irrotational, the velocity potential Laplace’s equation is spatially discretized and solved by considering the nonlinear Bernoulli’s equation for irrotational flow as the boundary condition on the free surface. The nonlinear boundary conditions are imposed through a semi-implicit iterative time marching. The fixed grid feature of the method, based on a Lagrangian description of fluid flow, allows for retaining the portion of the discretization performed in the first time step for the bulk of the fluid. Thus, the portion which pertains to the regions near the moving boundaries is reprocessed during the time marching. The accuracy and efficiency of the existing solution is shown by simulating various problems such as liquid sloshing induced by external excitation of the reservoir or initial deformed shape of liquid, seiche phenomena and solitary wave propagation in a basin with constant depth or with a step, and comparing the results with those which are analytically available or those from available codes such as Abaqus. The proposed method shows far better stability of the results when compared with those of Abaqus which sometimes exhibit divergence after a relatively large number of time steps. For instance, in the propagation of the considered solitary wave in an infinite-like domain problem, the wave height is calculated by the maximum error of 1.6% and 9% using the present method and Abaqus, respectively.
用固定网格法模拟非线性自由表面波
非线性表面波的模拟在流体容器和储层的安全研究中具有重要意义。本文采用局部指数基函数(EBF)的固定网格方法模拟了非线性自由表面流动。假设流动是无粘性和无旋转的,通过考虑无旋转流动的非线性伯努利方程作为自由表面上的边界条件,对速度势拉普拉斯方程进行空间离散化和求解。非线性边界条件是通过半隐式迭代时间推进来施加的。该方法的固定网格特征基于流体流动的拉格朗日描述,允许保留在第一时间步骤中对大部分流体执行的离散化部分。因此,属于移动边界附近区域的部分在时间行进期间被重新处理。现有解决方案的准确性和效率是通过模拟诸如由储层的外部激励或液体的初始变形形状引起的液体晃动、地震现象和孤立波在具有恒定深度或具有台阶的盆地中传播等各种问题来显示的,并将结果与分析可用的结果或来自诸如Abaqus的可用代码的结果进行比较。与Abaqus的方法相比,所提出的方法显示出更好的结果稳定性,Abaqus有时在相对大量的时间步长后表现出发散性。例如,在类无限域问题中所考虑的孤立波的传播中,使用本方法和Abaqus分别以1.6%和9%的最大误差计算波高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信