Aric Anloague, Devanshi Patel, Stephanie K Henderson, H. Rolfs, Mackenzie Powell, Sunny B. Patel, Nicole M LaFave, Vincent R Marshall, Bryan G Wacker, Collin M Young, J. Hum, Kevin J. Gries, J. Lowery
{"title":"A call for research on soft tissue manipulation (STM) as a bone anabolic therapy","authors":"Aric Anloague, Devanshi Patel, Stephanie K Henderson, H. Rolfs, Mackenzie Powell, Sunny B. Patel, Nicole M LaFave, Vincent R Marshall, Bryan G Wacker, Collin M Young, J. Hum, Kevin J. Gries, J. Lowery","doi":"10.29245/2767-5122/2021/1.1125","DOIUrl":null,"url":null,"abstract":"Individuals with osteoporosis, i.e., low bone mass, are at enhanced risk for fracture, disability, and death. Hospitalizations for osteoporotic fractures exceed those for heart attack, stroke, and breast cancer. Osteoporosis rates are predicted to increase due to an aging global population yet there are limited pharmacological treatment options for osteoporosis, particularly for long-term management of this chronic condition. Moreover, the drug development pipeline is relatively bereft of new strategies and drug candidates, creating an urgent need for developing new therapeutic strategies for treating osteoporosis. In this mini-review, we speculate about the potential for non-invasive soft tissue manipulation (STM) to exert anabolic effects on the skeleton that may provide therapeutic benefit for individuals with low bone mass. Our rationale is premised on work by us and others showing that STM leads to decreased levels of chemokines and pro-inflammatory cytokines (such as Interleukin (IL)-3, IL-6, and IL-8) known to restrict the differentiation and/or activity of bone-forming osteoblasts. However, there are no published studies examining whether STM impacts bone mass, potentially limiting the widespread use of this non-invasive and non-pharmacological intervention in the worldwide treatment of patients with osteoporosis, individuals with low bone mass due to being bed-ridden or otherwise mobility-limited, and persons subjected to spaceflight-related bone loss.","PeriodicalId":93588,"journal":{"name":"Journal of rehabilitation therapy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of rehabilitation therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29245/2767-5122/2021/1.1125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Individuals with osteoporosis, i.e., low bone mass, are at enhanced risk for fracture, disability, and death. Hospitalizations for osteoporotic fractures exceed those for heart attack, stroke, and breast cancer. Osteoporosis rates are predicted to increase due to an aging global population yet there are limited pharmacological treatment options for osteoporosis, particularly for long-term management of this chronic condition. Moreover, the drug development pipeline is relatively bereft of new strategies and drug candidates, creating an urgent need for developing new therapeutic strategies for treating osteoporosis. In this mini-review, we speculate about the potential for non-invasive soft tissue manipulation (STM) to exert anabolic effects on the skeleton that may provide therapeutic benefit for individuals with low bone mass. Our rationale is premised on work by us and others showing that STM leads to decreased levels of chemokines and pro-inflammatory cytokines (such as Interleukin (IL)-3, IL-6, and IL-8) known to restrict the differentiation and/or activity of bone-forming osteoblasts. However, there are no published studies examining whether STM impacts bone mass, potentially limiting the widespread use of this non-invasive and non-pharmacological intervention in the worldwide treatment of patients with osteoporosis, individuals with low bone mass due to being bed-ridden or otherwise mobility-limited, and persons subjected to spaceflight-related bone loss.