Methods of Estimating the Parameters of the Quasi Lindley Distribution

IF 1.6 Q1 STATISTICS & PROBABILITY
F. Opone, N. Ekhosuehi
{"title":"Methods of Estimating the Parameters of the Quasi Lindley Distribution","authors":"F. Opone, N. Ekhosuehi","doi":"10.6092/ISSN.1973-2201/8170","DOIUrl":null,"url":null,"abstract":"In this paper, we review the quasi Lindley distribution and established its quantile function. A simulation study is conducted to examine the bias and mean square error of the parameter estimates of the distribution through the method of moment estimation and the maximum likelihood estimation. Result obtained shows that the method of maximum likelihood is a better choice of estimation method for the parameters of the quasi Lindley distribution. Finally, an applicability of the quasi Lindley disttribution to a waiting time data set suggests that the distribution demonstrates superiority over the power Lindley distribution, Sushila distribution and the classical oneparameter Lindley distribution in terms of the maximized loglikelihood, the Akaike information criterion, the Kolmogorov-Smirnov and Cramer von Mises test statistic.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/8170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we review the quasi Lindley distribution and established its quantile function. A simulation study is conducted to examine the bias and mean square error of the parameter estimates of the distribution through the method of moment estimation and the maximum likelihood estimation. Result obtained shows that the method of maximum likelihood is a better choice of estimation method for the parameters of the quasi Lindley distribution. Finally, an applicability of the quasi Lindley disttribution to a waiting time data set suggests that the distribution demonstrates superiority over the power Lindley distribution, Sushila distribution and the classical oneparameter Lindley distribution in terms of the maximized loglikelihood, the Akaike information criterion, the Kolmogorov-Smirnov and Cramer von Mises test statistic.
拟林德利分布参数的估计方法
本文综述了拟林德利分布,并建立了其分位数函数。通过矩估计法和极大似然估计法对分布参数估计的偏差和均方误差进行了仿真研究。结果表明,极大似然法是拟林德利分布参数估计的较好选择。最后,拟林德利分布对等待时间数据集的适用性表明,该分布在最大对数似然、Akaike信息准则、Kolmogorov-Smirnov和Cramer von Mises检验统计量方面优于幂林德利分布、Sushila分布和经典单参数林德利分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信