The normal velocity of the population front in the "predator-prey" model

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Evgeniy Dats, Sergey Minaev, Vladimir Gubernov, Junnosuke Okajima
{"title":"The normal velocity of the population front in the \"predator-prey\" model","authors":"Evgeniy Dats, Sergey Minaev, Vladimir Gubernov, Junnosuke Okajima","doi":"10.1051/mmnp/2022039","DOIUrl":null,"url":null,"abstract":"The propagation of one and two-dimensional waves of populations are numerically investigated in the framework of the ``predator-prey'' model with the Arditi - Ginzburg trophic function. The propagation of prey and predator population waves and the propagation of co-existing populations' waves are considered. The simulations demonstrate that even in the case of an unstable quasi-equilibrium state of the system, which is established behind the front of a traveling wave, the propagation velocity of the joint population wave is a well-defined function. The calculated average propagation velocity of a cellular non-stationary wave front is determined uniquely for a given set of problem parameters.  The estimations of the wave propagation velocity are obtained for both the case of a plane and cellular wave fronts of populations. The structure and velocity of outward propagating circular cellular wave are investigated to clarify the local curvature and scaling effects on the wave dynamics.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2022039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The propagation of one and two-dimensional waves of populations are numerically investigated in the framework of the ``predator-prey'' model with the Arditi - Ginzburg trophic function. The propagation of prey and predator population waves and the propagation of co-existing populations' waves are considered. The simulations demonstrate that even in the case of an unstable quasi-equilibrium state of the system, which is established behind the front of a traveling wave, the propagation velocity of the joint population wave is a well-defined function. The calculated average propagation velocity of a cellular non-stationary wave front is determined uniquely for a given set of problem parameters.  The estimations of the wave propagation velocity are obtained for both the case of a plane and cellular wave fronts of populations. The structure and velocity of outward propagating circular cellular wave are investigated to clarify the local curvature and scaling effects on the wave dynamics.
“捕食者-猎物”模型中种群前沿的法向速度
在具有Arditi-Ginzburg营养函数的“捕食者-猎物”模型框架内,对种群的一维和二维波的传播进行了数值研究。考虑了猎物和捕食者种群波动的传播以及共存种群的波动的传播。模拟表明,即使在行波前沿后面建立的系统的不稳定准平衡状态下,联合总体波的传播速度也是一个定义明确的函数。对于给定的一组问题参数,计算的蜂窝非平稳波前的平均传播速度是唯一确定的。对于平面波前和群体的细胞波前,都获得了波传播速度的估计。研究了向外传播的圆形细胞波的结构和速度,以阐明局部曲率和尺度效应对波动力学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信