Computing f ‐divergences and distances of high‐dimensional probability density functions

IF 1.8 3区 数学 Q1 MATHEMATICS
A. Litvinenko, Y. Marzouk, H. Matthies, M. Scavino, Alessio Spantini
{"title":"Computing f ‐divergences and distances of high‐dimensional probability density functions","authors":"A. Litvinenko, Y. Marzouk, H. Matthies, M. Scavino, Alessio Spantini","doi":"10.1002/nla.2467","DOIUrl":null,"url":null,"abstract":"Very often, in the course of uncertainty quantification tasks or data analysis, one has to deal with high‐dimensional random variables. Here the interest is mainly to compute characterizations like the entropy, the Kullback–Leibler divergence, more general f$$ f $$ ‐divergences, or other such characteristics based on the probability density. The density is often not available directly, and it is a computational challenge to just represent it in a numerically feasible fashion in case the dimension is even moderately large. It is an even stronger numerical challenge to then actually compute said characteristics in the high‐dimensional case. In this regard it is proposed to approximate the discretized density in a compressed form, in particular by a low‐rank tensor. This can alternatively be obtained from the corresponding probability characteristic function, or more general representations of the underlying random variable. The mentioned characterizations need point‐wise functions like the logarithm. This normally rather trivial task becomes computationally difficult when the density is approximated in a compressed resp. low‐rank tensor format, as the point values are not directly accessible. The computations become possible by considering the compressed data as an element of an associative, commutative algebra with an inner product, and using matrix algorithms to accomplish the mentioned tasks. The representation as a low‐rank element of a high order tensor space allows to reduce the computational complexity and storage cost from exponential in the dimension to almost linear.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2467","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Very often, in the course of uncertainty quantification tasks or data analysis, one has to deal with high‐dimensional random variables. Here the interest is mainly to compute characterizations like the entropy, the Kullback–Leibler divergence, more general f$$ f $$ ‐divergences, or other such characteristics based on the probability density. The density is often not available directly, and it is a computational challenge to just represent it in a numerically feasible fashion in case the dimension is even moderately large. It is an even stronger numerical challenge to then actually compute said characteristics in the high‐dimensional case. In this regard it is proposed to approximate the discretized density in a compressed form, in particular by a low‐rank tensor. This can alternatively be obtained from the corresponding probability characteristic function, or more general representations of the underlying random variable. The mentioned characterizations need point‐wise functions like the logarithm. This normally rather trivial task becomes computationally difficult when the density is approximated in a compressed resp. low‐rank tensor format, as the point values are not directly accessible. The computations become possible by considering the compressed data as an element of an associative, commutative algebra with an inner product, and using matrix algorithms to accomplish the mentioned tasks. The representation as a low‐rank element of a high order tensor space allows to reduce the computational complexity and storage cost from exponential in the dimension to almost linear.
计算高维概率密度函数的f -散度和距离
通常,在不确定性量化任务或数据分析过程中,必须处理高维随机变量。这里的兴趣主要是计算熵、Kullback–Leibler散度、更一般的f$$f$$散度或其他基于概率密度的特征。密度通常无法直接获得,在尺寸甚至中等大的情况下,仅以数字可行的方式表示密度是一个计算挑战。在高维情况下,实际计算所述特性是一个更大的数值挑战。在这方面,建议以压缩形式近似离散密度,特别是通过低阶张量。这可以从相应的概率特征函数或底层随机变量的更一般的表示中获得。上述特征需要像对数一样的逐点函数。当密度以压缩的形式近似时,这个通常相当琐碎的任务在计算上变得困难。低阶张量格式,因为无法直接访问点值。通过将压缩数据视为具有内积的结合交换代数的元素,并使用矩阵算法来完成上述任务,计算成为可能。作为高阶张量空间的低秩元素的表示允许将计算复杂度和存储成本从维度上的指数降低到几乎线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信