Konstantin T. Matchev, Prasanth Shyamsundar, Jordan Smolinsky
{"title":"A Quantum Algorithm for Model-Independent Searches for New Physics","authors":"Konstantin T. Matchev, Prasanth Shyamsundar, Jordan Smolinsky","doi":"10.31526/lhep.2023.301","DOIUrl":null,"url":null,"abstract":"We propose a novel quantum technique to search for unmodelled anomalies in multi-dimensional binned collider data. We propose to associate an Ising lattice spin site with each bin, with the Ising Hamiltonian suitably constructed from the observed data and a corresponding theoretical expectation. In order to capture spatially correlated anomalies in the data, we introduce spin-spin interactions between neighboring sites, as well as self-interactions. The ground state energy of the resulting Ising Hamiltonian can be used as a new test statistic, which can be computed either classically or via adiabatic quantum optimization. We demonstrate that our test statistic outperforms some of the most commonly used goodness-of-fit tests. The new approach greatly reduces the look-elsewhere effect by exploiting the typical differences between statistical noise and genuine new physics signals.","PeriodicalId":36085,"journal":{"name":"Letters in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31526/lhep.2023.301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 12
Abstract
We propose a novel quantum technique to search for unmodelled anomalies in multi-dimensional binned collider data. We propose to associate an Ising lattice spin site with each bin, with the Ising Hamiltonian suitably constructed from the observed data and a corresponding theoretical expectation. In order to capture spatially correlated anomalies in the data, we introduce spin-spin interactions between neighboring sites, as well as self-interactions. The ground state energy of the resulting Ising Hamiltonian can be used as a new test statistic, which can be computed either classically or via adiabatic quantum optimization. We demonstrate that our test statistic outperforms some of the most commonly used goodness-of-fit tests. The new approach greatly reduces the look-elsewhere effect by exploiting the typical differences between statistical noise and genuine new physics signals.