{"title":"B-Morpher: Automated Learning of Morphological Language Characteristics for Inflection and Morphological Analysis","authors":"L. Kovács, G. Szabó","doi":"10.2478/cait-2022-0042","DOIUrl":null,"url":null,"abstract":"Abstract The automated induction of inflection rules is an important research area for computational linguistics. In this paper, we present a novel morphological rule induction model called B-Morpher that can be used for both inflection analysis and morphological analysis. The core element of the engine is a modified Bayes classifier in which class categories correspond to general string transformation rules. Beside the core classification module, the engine contains a neural network module and verification unit to improve classification accuracy. For the evaluation, beside the large Hungarian dataset the tests include smaller non-Hungarian datasets from the SIGMORPHON shared task pools. Our evaluation shows that the efficiency of B-Morpher is comparable with the best results, and it outperforms the state-of-theart base models for some languages. The proposed system can be characterized by not only high accuracy, but also short training time and small knowledge base size.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The automated induction of inflection rules is an important research area for computational linguistics. In this paper, we present a novel morphological rule induction model called B-Morpher that can be used for both inflection analysis and morphological analysis. The core element of the engine is a modified Bayes classifier in which class categories correspond to general string transformation rules. Beside the core classification module, the engine contains a neural network module and verification unit to improve classification accuracy. For the evaluation, beside the large Hungarian dataset the tests include smaller non-Hungarian datasets from the SIGMORPHON shared task pools. Our evaluation shows that the efficiency of B-Morpher is comparable with the best results, and it outperforms the state-of-theart base models for some languages. The proposed system can be characterized by not only high accuracy, but also short training time and small knowledge base size.