Weidong Shao, Chunxu Zhang, Jinghan Wang, Xiaolin He, Dongxia Wang, Yan Lv, Yue An, Huihui Wang
{"title":"Hyperspectral images classification for white blood cells with attention-aided convolutional neural networks and fusion network","authors":"Weidong Shao, Chunxu Zhang, Jinghan Wang, Xiaolin He, Dongxia Wang, Yan Lv, Yue An, Huihui Wang","doi":"10.1080/09500340.2023.2248634","DOIUrl":null,"url":null,"abstract":"The classification of White blood cells (WBCs) plays an important role. However, the traditional method of blood smear analysis is laborious. This paper presented a classification method of WBCs based on hyperspectral images and Deep learning (DL). The U-net network was proposed to extract spectral features of WBCs region of interest (ROI) under the pseudo-color images with specific hyperspectral images (420.8, 557.2 and 667.4 nm). For spectral features and the pseudo-colour images of hyperspectral data, attention-aided one and two-dimensional convolutional neural networks were applied to establish WBCs classification models, respectively. The overall average accuracy can reach 94.20% and 92.60%, respectively. A fusion network was constructed to make full use of the spectral and image spatial features, and its classification accuracy reached 96.20%. In terms of overall average accuracy, the fusion network model was the optimal, but for individual types of WBCs, each network had its own unique advantages.","PeriodicalId":16426,"journal":{"name":"Journal of Modern Optics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/09500340.2023.2248634","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The classification of White blood cells (WBCs) plays an important role. However, the traditional method of blood smear analysis is laborious. This paper presented a classification method of WBCs based on hyperspectral images and Deep learning (DL). The U-net network was proposed to extract spectral features of WBCs region of interest (ROI) under the pseudo-color images with specific hyperspectral images (420.8, 557.2 and 667.4 nm). For spectral features and the pseudo-colour images of hyperspectral data, attention-aided one and two-dimensional convolutional neural networks were applied to establish WBCs classification models, respectively. The overall average accuracy can reach 94.20% and 92.60%, respectively. A fusion network was constructed to make full use of the spectral and image spatial features, and its classification accuracy reached 96.20%. In terms of overall average accuracy, the fusion network model was the optimal, but for individual types of WBCs, each network had its own unique advantages.
期刊介绍:
The journal (under its former title Optica Acta) was founded in 1953 - some years before the advent of the laser - as an international journal of optics. Since then optical research has changed greatly; fresh areas of inquiry have been explored, different techniques have been employed and the range of application has greatly increased. The journal has continued to reflect these advances as part of its steadily widening scope.
Journal of Modern Optics aims to publish original and timely contributions to optical knowledge from educational institutions, government establishments and industrial R&D groups world-wide. The whole field of classical and quantum optics is covered. Papers may deal with the applications of fundamentals of modern optics, considering both experimental and theoretical aspects of contemporary research. In addition to regular papers, there are topical and tutorial reviews, and special issues on highlighted areas.
All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees.
General topics covered include:
• Optical and photonic materials (inc. metamaterials)
• Plasmonics and nanophotonics
• Quantum optics (inc. quantum information)
• Optical instrumentation and technology (inc. detectors, metrology, sensors, lasers)
• Coherence, propagation, polarization and manipulation (classical optics)
• Scattering and holography (diffractive optics)
• Optical fibres and optical communications (inc. integrated optics, amplifiers)
• Vision science and applications
• Medical and biomedical optics
• Nonlinear and ultrafast optics (inc. harmonic generation, multiphoton spectroscopy)
• Imaging and Image processing