{"title":"Iterated Laurent series over rings and the Contou-Carrère symbol","authors":"S. Gorchinskiy, D. Osipov","doi":"10.1070/RM9975","DOIUrl":null,"url":null,"abstract":"This article contains a survey of a new algebro-geometric approach for working with iterated algebraic loop groups associated with iterated Laurent series over arbitrary commutative rings and its applications to the study of the higher-dimensional Contou-Carrère symbol. In addition to the survey, the article also contains new results related to this symbol. The higher-dimensional Contou-Carrère symbol arises naturally when one considers deformation of a flag of algebraic subvarieties of an algebraic variety. The non-triviality of the problem is due to the fact that, in the case 1$?> , for the group of invertible elements of the algebra of -iterated Laurent series over a ring, no representation is known in the form of an ind-flat scheme over this ring. Therefore, essentially new algebro-geometric constructions, notions, and methods are required. As an application of the new methods used, a description of continuous homomorphisms between algebras of iterated Laurent series over a ring is given, and an invertibility criterion for such endomorphisms is found. It is shown that the higher- dimensional Contou-Carrère symbol, restricted to algebras over the field of rational numbers, is given by a natural explicit formula, and this symbol extends uniquely to all rings. An explicit formula is also given for the higher-dimensional Contou-Carrère symbol in the case of all rings. The connection with higher-dimensional class field theory is described. As a new result, it is shown that the higher-dimensional Contou-Carrère symbol has a universal property. Namely, if one fixes a torsion-free ring and considers a flat group scheme over this ring such that any two points of the scheme are contained in an affine open subset, then after restricting to algebras over the fixed ring, all morphisms from the -iterated algebraic loop group of the Milnor -group of degree to the above group scheme factor through the higher-dimensional Contou-Carrère symbol. Bibliography: 67 titles.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM9975","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
This article contains a survey of a new algebro-geometric approach for working with iterated algebraic loop groups associated with iterated Laurent series over arbitrary commutative rings and its applications to the study of the higher-dimensional Contou-Carrère symbol. In addition to the survey, the article also contains new results related to this symbol. The higher-dimensional Contou-Carrère symbol arises naturally when one considers deformation of a flag of algebraic subvarieties of an algebraic variety. The non-triviality of the problem is due to the fact that, in the case 1$?> , for the group of invertible elements of the algebra of -iterated Laurent series over a ring, no representation is known in the form of an ind-flat scheme over this ring. Therefore, essentially new algebro-geometric constructions, notions, and methods are required. As an application of the new methods used, a description of continuous homomorphisms between algebras of iterated Laurent series over a ring is given, and an invertibility criterion for such endomorphisms is found. It is shown that the higher- dimensional Contou-Carrère symbol, restricted to algebras over the field of rational numbers, is given by a natural explicit formula, and this symbol extends uniquely to all rings. An explicit formula is also given for the higher-dimensional Contou-Carrère symbol in the case of all rings. The connection with higher-dimensional class field theory is described. As a new result, it is shown that the higher-dimensional Contou-Carrère symbol has a universal property. Namely, if one fixes a torsion-free ring and considers a flat group scheme over this ring such that any two points of the scheme are contained in an affine open subset, then after restricting to algebras over the fixed ring, all morphisms from the -iterated algebraic loop group of the Milnor -group of degree to the above group scheme factor through the higher-dimensional Contou-Carrère symbol. Bibliography: 67 titles.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.