A new tsunami hazard assessment for eastern Makran subduction zone by considering splay faults and applying stochastic modeling

IF 1.9 3区 工程技术 Q3 ENGINEERING, CIVIL
P. Momeni, K. Goda, M. Mokhtari, M. Heidarzadeh
{"title":"A new tsunami hazard assessment for eastern Makran subduction zone by considering splay faults and applying stochastic modeling","authors":"P. Momeni, K. Goda, M. Mokhtari, M. Heidarzadeh","doi":"10.1080/21664250.2022.2117585","DOIUrl":null,"url":null,"abstract":"ABSTRACT Tsunami hazard imposed by possible rupture of splay faults is important as it may significantly intensify tsunami heights locally. The Makran Subduction Zone (MSZ) in the northwestern Indian Ocean can generate large thrust earthquakes that could trigger significant tsunamis. In this paper, the effects of possible rupture of splay faults on the tsunami hazards of eastern MSZ are studied by developing a framework that uses stochastic earthquake rupture models and considers uncertainties related to rupture location, rupture geometry, seismic moment split ratio, earthquake slip asperity location within a fault plane, and earthquake slip heterogeneity. To quantify these uncertainties, 484 different parameter combinations of tsunami sources are considered systematically. The geometry of splay faults is developed using the most recent marine seismic surveys of the tectonic structure of the MSZ. A moment magnitude of 8.6 is considered as a scenario magnitude. The results of this study are generated in two parts, by considering average sources and stochastic sources. Results show significant local amplification of the maximum tsunami heights due to splay faults. For instance, the maximum wave height in Pasni, Pakistan can be amplified by a factor of four due to a single splay fault rupture scenario of average sources.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21664250.2022.2117585","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT Tsunami hazard imposed by possible rupture of splay faults is important as it may significantly intensify tsunami heights locally. The Makran Subduction Zone (MSZ) in the northwestern Indian Ocean can generate large thrust earthquakes that could trigger significant tsunamis. In this paper, the effects of possible rupture of splay faults on the tsunami hazards of eastern MSZ are studied by developing a framework that uses stochastic earthquake rupture models and considers uncertainties related to rupture location, rupture geometry, seismic moment split ratio, earthquake slip asperity location within a fault plane, and earthquake slip heterogeneity. To quantify these uncertainties, 484 different parameter combinations of tsunami sources are considered systematically. The geometry of splay faults is developed using the most recent marine seismic surveys of the tectonic structure of the MSZ. A moment magnitude of 8.6 is considered as a scenario magnitude. The results of this study are generated in two parts, by considering average sources and stochastic sources. Results show significant local amplification of the maximum tsunami heights due to splay faults. For instance, the maximum wave height in Pasni, Pakistan can be amplified by a factor of four due to a single splay fault rupture scenario of average sources.
考虑展断层并应用随机模型的马克兰东部俯冲带海啸危险性评价新方法
展断层可能破裂所造成的海啸危险是重要的,因为它可能显著地加剧局部海啸高度。印度洋西北部的马克兰俯冲带(MSZ)可以产生大型逆冲地震,可能引发严重的海啸。本文采用随机地震破裂模型,考虑了破裂位置、破裂几何形状、地震矩劈裂比、断层平面内地震滑动粗糙度位置和地震滑动非均质性等不确定性因素,研究了扇形断层可能破裂对MSZ东部海啸灾害的影响。为了量化这些不确定性,系统地考虑了484种不同的海啸源参数组合。利用最近对MSZ构造结构的海洋地震调查,发展了斜断层的几何形状。矩震级8.6被认为是情景震级。本研究的结果分为两部分,分别考虑平均源和随机源。结果表明,由于展向断层,最大海啸高度在局部有明显的放大。例如,巴基斯坦Pasni的最大波高可以被放大四倍,这是由于平均震源的单张断层破裂情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Coastal Engineering Journal
Coastal Engineering Journal 工程技术-工程:大洋
CiteScore
4.60
自引率
8.30%
发文量
0
审稿时长
7.5 months
期刊介绍: Coastal Engineering Journal is a peer-reviewed medium for the publication of research achievements and engineering practices in the fields of coastal, harbor and offshore engineering. The CEJ editors welcome original papers and comprehensive reviews on waves and currents, sediment motion and morphodynamics, as well as on structures and facilities. Reports on conceptual developments and predictive methods of environmental processes are also published. Topics also include hard and soft technologies related to coastal zone development, shore protection, and prevention or mitigation of coastal disasters. The journal is intended to cover not only fundamental studies on analytical models, numerical computation and laboratory experiments, but also results of field measurements and case studies of real projects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信