Inhomogeneous Helmholtz equations in wave guides – existence and uniqueness results with energy methods

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
B. Schweizer
{"title":"Inhomogeneous Helmholtz equations in wave guides – existence and uniqueness results with energy methods","authors":"B. Schweizer","doi":"10.1017/s0956792522000080","DOIUrl":null,"url":null,"abstract":"The Helmholtz equation \n \n \n \n$-\\nabla\\cdot (a\\nabla u) - \\omega^2 u = f$\n\n \n is considered in an unbounded wave guide \n \n \n \n$\\Omega := \\mathbb{R} \\times S \\subset \\mathbb{R}^d$\n\n \n , \n \n \n \n$S\\subset \\mathbb{R}^{d-1}$\n\n \n a bounded domain. The coefficient a is strictly elliptic and either periodic in the unbounded direction \n \n \n \n$x_1 \\in \\mathbb{R}$\n\n \n or periodic outside a compact subset; in the latter case, two different periodic media can be used in the two unbounded directions. For non-singular frequencies \n \n \n \n$\\omega$\n\n \n , we show the existence of a solution u. While previous proofs of such results were based on analyticity arguments within operator theory, here, only energy methods are used.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792522000080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The Helmholtz equation $-\nabla\cdot (a\nabla u) - \omega^2 u = f$ is considered in an unbounded wave guide $\Omega := \mathbb{R} \times S \subset \mathbb{R}^d$ , $S\subset \mathbb{R}^{d-1}$ a bounded domain. The coefficient a is strictly elliptic and either periodic in the unbounded direction $x_1 \in \mathbb{R}$ or periodic outside a compact subset; in the latter case, two different periodic media can be used in the two unbounded directions. For non-singular frequencies $\omega$ , we show the existence of a solution u. While previous proofs of such results were based on analyticity arguments within operator theory, here, only energy methods are used.
波导中的非齐次亥姆霍兹方程。能量法的存在性和唯一性结果
Helmholtz方程$-\nabla\cdot(a\nablau)-\omega^2 u=f$在无界波导$\omega:=\mathbb{R}\times S\subet \mathbb{R}^d$中被认为是有界域。系数a是严格椭圆的,在无界方向$x_1\in\mathbb{R}$上是周期性的,或者在紧子集外是周期性;在后一种情况下,可以在两个无界方向上使用两种不同的周期性介质。对于非奇异频率$\omega$,我们证明了解u的存在。虽然以前对这些结果的证明是基于算子理论中的分析性论点,但这里只使用能量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信