Carla Nascimento Queiroz, Henrique Almeida Cunha, Manoel Ribeiro da Silva, Márcia Gomes de Oliveira, Jacira Aparecida Castanharo, Ivana Lourenço de Mello Ferreira, Marcos Antonio da Silva Costa
{"title":"Influence of Synthesis Parameters on the Magnetic, Thermal, and Morphological Properties of Poly(Glycidyl Methacrylate-co-Divinylbenzene)/Magnetite","authors":"Carla Nascimento Queiroz, Henrique Almeida Cunha, Manoel Ribeiro da Silva, Márcia Gomes de Oliveira, Jacira Aparecida Castanharo, Ivana Lourenço de Mello Ferreira, Marcos Antonio da Silva Costa","doi":"10.1002/mren.202200073","DOIUrl":null,"url":null,"abstract":"<p>In this work, polymeric microspheres based on glycidyl methacrylate and divinylbenzene with magnetic properties are synthesized by the suspension polymerization technique. To obtain magnetic properties, magnetite particles modified by oleic acid are synthesized in the laboratory. The effects of stirring speed, concentration of magnetite added, and concentration of stabilizer on the particles’ properties are studied. The magnetic microspheres are characterized according their morphology, magnetite incorporation, and magnetic and thermal properties. The incorporation of iron particles is mainly affected by stirring speed during synthesis and the amount of added magnetic material. The saturation magnetization of the microspheres is affected by the content of incorporated magnetic material. The modification with oleic acid is important for incorporation of the magnetic material in the copolymer matrix. Polymeric particles with superparamagnetic behavior are obtained with spherical morphology and saturation magnetization of 7.11 (emu g<sup>−1</sup>) when employing a monomer molar ratio of 50/50, 1% poly(vinyl alcohol), 20% magnetite particles modified by oleic acid, and stirring speed of 500 rpm.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202200073","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, polymeric microspheres based on glycidyl methacrylate and divinylbenzene with magnetic properties are synthesized by the suspension polymerization technique. To obtain magnetic properties, magnetite particles modified by oleic acid are synthesized in the laboratory. The effects of stirring speed, concentration of magnetite added, and concentration of stabilizer on the particles’ properties are studied. The magnetic microspheres are characterized according their morphology, magnetite incorporation, and magnetic and thermal properties. The incorporation of iron particles is mainly affected by stirring speed during synthesis and the amount of added magnetic material. The saturation magnetization of the microspheres is affected by the content of incorporated magnetic material. The modification with oleic acid is important for incorporation of the magnetic material in the copolymer matrix. Polymeric particles with superparamagnetic behavior are obtained with spherical morphology and saturation magnetization of 7.11 (emu g−1) when employing a monomer molar ratio of 50/50, 1% poly(vinyl alcohol), 20% magnetite particles modified by oleic acid, and stirring speed of 500 rpm.
期刊介绍:
Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.