The limit behavior of SEIRS model in spatial grid

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Hongjun Gao, Shuaipeng Liu, Yeyu Xiao
{"title":"The limit behavior of SEIRS model in spatial grid","authors":"Hongjun Gao, Shuaipeng Liu, Yeyu Xiao","doi":"10.1142/s0219493722400081","DOIUrl":null,"url":null,"abstract":"In this paper, we study a SEIRS model with Neumann boundary condition for a population distributed in a spatial grid. We first discuss the existence and uniqueness of global positive solution with any given positive initial value. Next, we introduce the basic reproduction number of this model. Then we consider the relation between the system of PDE and the discrete ODE model. Finally, we consider the stochastic model and give two laws of large numbers.","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493722400081","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a SEIRS model with Neumann boundary condition for a population distributed in a spatial grid. We first discuss the existence and uniqueness of global positive solution with any given positive initial value. Next, we introduce the basic reproduction number of this model. Then we consider the relation between the system of PDE and the discrete ODE model. Finally, we consider the stochastic model and give two laws of large numbers.
空间网格中SEIRS模型的极限行为
本文研究了具有Neumann边界条件的空间网格人口SEIRS模型。首先讨论了任意给定正初值的全局正解的存在唯一性。接下来,我们将介绍该模型的基本复制数。在此基础上,研究了PDE系统与离散ODE模型之间的关系。最后,我们考虑了随机模型,给出了两个大数定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastics and Dynamics
Stochastics and Dynamics 数学-统计学与概率论
CiteScore
1.70
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view. Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信