Pascal Laforge, A. T. Vincent, C. Duchaine, Perrine Feutry, Annick Dion-Fortier, Pier-Luc Plante, Éric Pouliot, S. Fournaise, L. Saucier
{"title":"Contribution of farms to the microbiota in the swine value chain","authors":"Pascal Laforge, A. T. Vincent, C. Duchaine, Perrine Feutry, Annick Dion-Fortier, Pier-Luc Plante, Éric Pouliot, S. Fournaise, L. Saucier","doi":"10.3389/fsysb.2023.1183868","DOIUrl":null,"url":null,"abstract":"Introduction: A thorough understanding of the microbial ecology within the swine value chain is essential to develop new strategies to optimize the microbiological quality of pork products. To our knowledge, no study to date has followed the microbiota through the value chain from live farm animals to the cuts of meat obtained for market. The objective of this study is to evaluate how the microbiota of pigs and their environment influence the microbial composition of samples collected throughout the value chain, including the meat plant and meat cuts.Method and results: Results from 16S rDNA sequencing, short-chain fatty acid concentrations and metabolomic analysis of pig feces revealed that the microbiota from two farms with differing sanitary statuses were distinctive. The total aerobic mesophilic bacteria and Enterobacteriaceae counts from samples collected at the meat plant after the pre-operation cleaning and disinfection steps were at or around the detection limit and the pigs from the selected farms were the first to be slaughtered on each shipment days. The bacterial counts of individual samples collected at the meat plant did not vary significantly between the farms. Alpha diversity results indicate that as we move through the steps in the value chain, there is a clear reduction in the diversity of the microbiota. A beta diversity analysis revealed a more distinct microbiota at the farms compared to the meat plant which change and became more uniform as samples were taken towards the end of the value chain. The source tracker analysis showed that only 12.92% of the microbiota in shoulder samples originated from the farms and 81% of the bacteria detected on the dressed carcasses were of unknown origin.Discussion: Overall, the results suggest that with the current level of microbial control at farms, it is possible to obtain pork products with similar microbiological quality from different farms. However, broader studies are required to determine the impact of the sanitary status of the herd on the final products.","PeriodicalId":73109,"journal":{"name":"Frontiers in systems biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsysb.2023.1183868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: A thorough understanding of the microbial ecology within the swine value chain is essential to develop new strategies to optimize the microbiological quality of pork products. To our knowledge, no study to date has followed the microbiota through the value chain from live farm animals to the cuts of meat obtained for market. The objective of this study is to evaluate how the microbiota of pigs and their environment influence the microbial composition of samples collected throughout the value chain, including the meat plant and meat cuts.Method and results: Results from 16S rDNA sequencing, short-chain fatty acid concentrations and metabolomic analysis of pig feces revealed that the microbiota from two farms with differing sanitary statuses were distinctive. The total aerobic mesophilic bacteria and Enterobacteriaceae counts from samples collected at the meat plant after the pre-operation cleaning and disinfection steps were at or around the detection limit and the pigs from the selected farms were the first to be slaughtered on each shipment days. The bacterial counts of individual samples collected at the meat plant did not vary significantly between the farms. Alpha diversity results indicate that as we move through the steps in the value chain, there is a clear reduction in the diversity of the microbiota. A beta diversity analysis revealed a more distinct microbiota at the farms compared to the meat plant which change and became more uniform as samples were taken towards the end of the value chain. The source tracker analysis showed that only 12.92% of the microbiota in shoulder samples originated from the farms and 81% of the bacteria detected on the dressed carcasses were of unknown origin.Discussion: Overall, the results suggest that with the current level of microbial control at farms, it is possible to obtain pork products with similar microbiological quality from different farms. However, broader studies are required to determine the impact of the sanitary status of the herd on the final products.