Distributions of the Ratio and Product of Two Independent Weibull and Lindley Random Variables

IF 1 Q3 STATISTICS & PROBABILITY
N. J. Hassan, A. Nasar, J. M. Hadad
{"title":"Distributions of the Ratio and Product of Two Independent Weibull and Lindley Random Variables","authors":"N. J. Hassan, A. Nasar, J. M. Hadad","doi":"10.1155/2020/5693129","DOIUrl":null,"url":null,"abstract":"In this paper, we derive the cumulative distribution functions (CDF) and probability density functions (PDF) of the ratio and product of two independent Weibull and Lindley random variables. The moment generating functions (MGF) and the k -moment are driven from the ratio and product cases. In these derivations, we use some special functions, for instance, generalized hypergeometric functions, confluent hypergeometric functions, and the parabolic cylinder functions. Finally, we draw the PDF and CDF in many values of the parameters.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":"2020 1","pages":"1-8"},"PeriodicalIF":1.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/5693129","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/5693129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we derive the cumulative distribution functions (CDF) and probability density functions (PDF) of the ratio and product of two independent Weibull and Lindley random variables. The moment generating functions (MGF) and the k -moment are driven from the ratio and product cases. In these derivations, we use some special functions, for instance, generalized hypergeometric functions, confluent hypergeometric functions, and the parabolic cylinder functions. Finally, we draw the PDF and CDF in many values of the parameters.
两个独立Weibull和Lindley随机变量的比值和乘积的分布
本文推导了两个独立威布尔和林德利随机变量的比值和乘积的累积分布函数(CDF)和概率密度函数(PDF)。矩母函数(MGF)和k矩是由比值和乘积情况驱动的。在这些推导中,我们使用了一些特殊的函数,例如广义超几何函数、合流超几何函数和抛物柱面函数。最后,我们绘制了PDF和CDF中许多值的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信