Mohammad Kazemi Garajeh, Qihao Weng, Vahid Hossein Haghi, Zhenlong Li, Ali Kazemi Garajeh, Behnam Salmani
{"title":"Learning-Based Methods for Detection and Monitoring of Shallow Flood-Affected Areas: Impact of Shallow-Flood Spreading on Vegetation Density","authors":"Mohammad Kazemi Garajeh, Qihao Weng, Vahid Hossein Haghi, Zhenlong Li, Ali Kazemi Garajeh, Behnam Salmani","doi":"10.1080/07038992.2022.2072277","DOIUrl":null,"url":null,"abstract":"Abstract This study aims to investigate the impacts of shallow flood spreading on vegetation density using a time-series collection of Landsat images spanning 2012–2020. To do this, Support Vector Machine (SVM), Random Forest (RF), Classification and Regression tree (CART) and Deep Learning Convolutional Neural Network (DL-CNN) algorithms were employed for flood-affected areas mapping and monitoring. The models were trained by using 214, 235, 230, and 219 ground truth data for years 2012, 2014, 2017 and 2020 respectively. Our accuracy assessment via the area under curve (AUC) method reveals that the DL-CNN outperforms the SVM, the RF and the CART models for detecting and mapping shallow-flood-affected areas. The findings of this study further revealed significant changes in the NDVI values within a period before and after flood occurrence. While the mean values of the NDVI were estimated 0.232, 0.221, 0.213, and 0.232 for years 2012, 2014, 2017, and 2020, respectively, prior to flood spreading, these values increased up to 0.464, 0.476, 0.355 and 0.444, respectively following flood occurrence. Furthermore, physical-chemical soil properties (e.g., clay, EC, Na, and MgHCO3), have grown considerably in the study region following the flood spreading.","PeriodicalId":48843,"journal":{"name":"Canadian Journal of Remote Sensing","volume":"48 1","pages":"481 - 503"},"PeriodicalIF":2.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07038992.2022.2072277","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract This study aims to investigate the impacts of shallow flood spreading on vegetation density using a time-series collection of Landsat images spanning 2012–2020. To do this, Support Vector Machine (SVM), Random Forest (RF), Classification and Regression tree (CART) and Deep Learning Convolutional Neural Network (DL-CNN) algorithms were employed for flood-affected areas mapping and monitoring. The models were trained by using 214, 235, 230, and 219 ground truth data for years 2012, 2014, 2017 and 2020 respectively. Our accuracy assessment via the area under curve (AUC) method reveals that the DL-CNN outperforms the SVM, the RF and the CART models for detecting and mapping shallow-flood-affected areas. The findings of this study further revealed significant changes in the NDVI values within a period before and after flood occurrence. While the mean values of the NDVI were estimated 0.232, 0.221, 0.213, and 0.232 for years 2012, 2014, 2017, and 2020, respectively, prior to flood spreading, these values increased up to 0.464, 0.476, 0.355 and 0.444, respectively following flood occurrence. Furthermore, physical-chemical soil properties (e.g., clay, EC, Na, and MgHCO3), have grown considerably in the study region following the flood spreading.
期刊介绍:
Canadian Journal of Remote Sensing / Journal canadien de télédétection is a publication of the Canadian Aeronautics and Space Institute (CASI) and the official journal of the Canadian Remote Sensing Society (CRSS-SCT).
Canadian Journal of Remote Sensing provides a forum for the publication of scientific research and review articles. The journal publishes topics including sensor and algorithm development, image processing techniques and advances focused on a wide range of remote sensing applications including, but not restricted to; forestry and agriculture, ecology, hydrology and water resources, oceans and ice, geology, urban, atmosphere, and environmental science. Articles can cover local to global scales and can be directly relevant to the Canadian, or equally important, the international community. The international editorial board provides expertise in a wide range of remote sensing theory and applications.