Structure evolution of vacancy-hydrogen complexes in a nickel-based single-crystal superalloy

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaozhi Tang, Xiao-Tong Li, Ya-Fang Guo
{"title":"Structure evolution of vacancy-hydrogen complexes in a nickel-based single-crystal superalloy","authors":"Xiaozhi Tang, Xiao-Tong Li, Ya-Fang Guo","doi":"10.1080/09500839.2022.2145026","DOIUrl":null,"url":null,"abstract":"ABSTRACT The structural stability of vacancy-hydrogen complexes at the interface in nickel-based single-crystal superalloy is accessed mainly by calculating the activation energies associated with the evolution of their structures. It is found that the structure evolution and subsequent decomposition of the complex needs little time to be thermally activated at the service temperature of an aeroengine, and misfit dislocations at the interface significantly reduces the energy barrier for decomposition. Therefore, during the creep process, which is more severe at high temperatures, vacancies around misfit dislocations are not expected to enhance hydrogen interfacial segregation, although vacancy-hydrogen complexes are quite stable at room temperature.","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"102 1","pages":"407 - 416"},"PeriodicalIF":1.2000,"publicationDate":"2022-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09500839.2022.2145026","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The structural stability of vacancy-hydrogen complexes at the interface in nickel-based single-crystal superalloy is accessed mainly by calculating the activation energies associated with the evolution of their structures. It is found that the structure evolution and subsequent decomposition of the complex needs little time to be thermally activated at the service temperature of an aeroengine, and misfit dislocations at the interface significantly reduces the energy barrier for decomposition. Therefore, during the creep process, which is more severe at high temperatures, vacancies around misfit dislocations are not expected to enhance hydrogen interfacial segregation, although vacancy-hydrogen complexes are quite stable at room temperature.
镍基单晶高温合金中空位-氢配合物的结构演变
摘要镍基单晶高温合金界面空位-氢配合物的结构稳定性主要通过计算其结构演变的活化能来获得。研究发现,在航空发动机工作温度下,该配合物的结构演化和后续分解所需的热激活时间较短,界面处的错配位错显著降低了分解的能垒。因此,在高温下更为剧烈的蠕变过程中,尽管空位-氢配合物在室温下相当稳定,但失配位错周围的空位并不会增强氢界面的偏析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Philosophical Magazine Letters
Philosophical Magazine Letters 物理-物理:凝聚态物理
CiteScore
2.60
自引率
0.00%
发文量
25
审稿时长
2.7 months
期刊介绍: Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate. Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信