Distributions and wave front sets in the uniform non‐archimedean setting

IF 1.1 Q1 MATHEMATICS
R. Cluckers, Immanuel Halupczok, F. Loeser, M. Raibaut
{"title":"Distributions and wave front sets in the uniform non‐archimedean setting","authors":"R. Cluckers, Immanuel Halupczok, F. Loeser, M. Raibaut","doi":"10.1112/tlm3.12013","DOIUrl":null,"url":null,"abstract":"We study some constructions on distributions in a uniform p ‐adic context, and also in large positive characteristic, using model theoretic methods. We introduce a class of distributions which we call distributions of C exp ‐class and which is based on the notion of C exp ‐class functions from Cluckers and Halupczok [J. Ecole Polytechnique (JEP) 5 (2018) 45–78]. This class of distributions is stable under Fourier transformation and has various forms of uniform behavior across non‐archimedean local fields. We study wave front sets, pull‐backs and push‐forwards of distributions of this class. In particular, we show that the wave front set is always equal to the complement of the zero locus of a C exp ‐class function. We first revise and generalize some of the results of Heifetz that he developed in the p ‐adic context by analogy to results about real wave front sets by Hörmander. In the final section, we study sizes of neighborhoods of local constancy of Schwartz–Bruhat functions and their push‐forwards in relation to discriminants.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2017-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlm3.12013","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

We study some constructions on distributions in a uniform p ‐adic context, and also in large positive characteristic, using model theoretic methods. We introduce a class of distributions which we call distributions of C exp ‐class and which is based on the notion of C exp ‐class functions from Cluckers and Halupczok [J. Ecole Polytechnique (JEP) 5 (2018) 45–78]. This class of distributions is stable under Fourier transformation and has various forms of uniform behavior across non‐archimedean local fields. We study wave front sets, pull‐backs and push‐forwards of distributions of this class. In particular, we show that the wave front set is always equal to the complement of the zero locus of a C exp ‐class function. We first revise and generalize some of the results of Heifetz that he developed in the p ‐adic context by analogy to results about real wave front sets by Hörmander. In the final section, we study sizes of neighborhoods of local constancy of Schwartz–Bruhat functions and their push‐forwards in relation to discriminants.
均匀非阿基米德环境中的分布和波前集
我们用模型理论方法研究了一致p进环境和大正特征下分布的一些结构。基于Cluckers和Halupczok [J]的C exp - class函数概念,我们引入了一类我们称之为C exp - class分布的分布。综合理工学院(JEP) 5(2018) 45-78]。这类分布在傅里叶变换下是稳定的,并且在非阿基米德局部场上具有各种形式的均匀行为。我们研究了这类分布的波前集、后拉和前推。特别地,我们证明了波前集总是等于C exp类函数的零轨迹的补。我们首先修正和推广海菲兹在p - adic环境下的一些结果,类比于Hörmander关于实波前集的结果。在最后一节中,我们研究了schwarz - bruhat函数的局部常数的邻域大小及其与判别式的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信