Inference in Multiple Linear Regression Model with Generalized Secant Hyperbolic Distribution Errors

Álvaro Alexander Burbano Moreno, Oscar Orlando Melo-Martinez, Q. Qamarul Islam
{"title":"Inference in Multiple Linear Regression Model with Generalized Secant Hyperbolic Distribution Errors","authors":"Álvaro Alexander Burbano Moreno, Oscar Orlando Melo-Martinez, Q. Qamarul Islam","doi":"10.17230/10.17230/INGCIENCIA.17.33.3","DOIUrl":null,"url":null,"abstract":"We study multiple linear regression model under non-normally distributed random error by considering the family of generalized secant hyperbolic distributions. We derive the estimators of model parameters by using modified maximum likelihood methodology and explore the properties of the modified maximum likelihood estimators so obtained. We show that the proposed estimators are more efficient and robust than the commonly used least square estimators. We also develop the relevant test of hypothesis procedures and compared the performance of such tests vis-a-vis the classical tests that are based upon the least square approach.","PeriodicalId":30405,"journal":{"name":"Ingenieria y Ciencia","volume":"17 1","pages":"45-70"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenieria y Ciencia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17230/10.17230/INGCIENCIA.17.33.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study multiple linear regression model under non-normally distributed random error by considering the family of generalized secant hyperbolic distributions. We derive the estimators of model parameters by using modified maximum likelihood methodology and explore the properties of the modified maximum likelihood estimators so obtained. We show that the proposed estimators are more efficient and robust than the commonly used least square estimators. We also develop the relevant test of hypothesis procedures and compared the performance of such tests vis-a-vis the classical tests that are based upon the least square approach.
具有广义割线双曲型分布误差的多元线性回归模型的推理
通过考虑广义割线双曲分布族,研究了非正态分布随机误差下的多元线性回归模型。我们用修正的最大似然方法导出了模型参数的估计量,并探讨了由此得到的修正的最大概估计量的性质。我们证明了所提出的估计量比常用的最小二乘估计量更有效率和鲁棒性。我们还开发了假设程序的相关检验,并将此类检验的性能与基于最小二乘法的经典检验进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信