Comparative Study of Physicochemical Properties of Finely Dispersed Powders and Ceramics in the Systems CeO2–Sm2O3 and CeO2–Nd2O3 as Electrolyte Materials for Medium Temperature Fuel Cells
M. Kalinina, D. A. Dyuskina, S. Mjakin, I. Kruchinina, O. Shilova
{"title":"Comparative Study of Physicochemical Properties of Finely Dispersed Powders and Ceramics in the Systems CeO2–Sm2O3 and CeO2–Nd2O3 as Electrolyte Materials for Medium Temperature Fuel Cells","authors":"M. Kalinina, D. A. Dyuskina, S. Mjakin, I. Kruchinina, O. Shilova","doi":"10.3390/ceramics6020073","DOIUrl":null,"url":null,"abstract":"Finely dispersed (CeO2)1−x(Sm2O3)x (x = 0.05, 0.10, 0.20) and (CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25) powders were synthesized via liquid-phase techniques based on the co-precipitation of hydroxides and were used to obtain ceramic materials comprising fluorite-like solid solutions with CSR in the range 69–88 nm (upon annealing at 1300 °C) and open porosity in the range 0.6–6.2%. The physicochemical properties of the synthesized materials were comparatively characterized. In general, the prepared materials were found to possess a mixed type of electrical conductivity, but in the medium-temperature range, the ionic component was predominant (ion transfer numbers ti = 0.93–0.73 at 300–700 °C). The highest ionic conductivity was observed for CeO2-based samples containing 20 mol.% Sm2O3 (σ700°C = 3.3 × 10−2 S/cm) and 15 mol.% Nd2O3 (σ700°C = 0.48 × 10−2 S/cm) was in the temperature range 500–700 °C. The physicochemical properties (density, open porosity, type and mechanism of electrical conductivity) of the obtained ceramic materials make them promising as solid oxide electrolytes for medium temperature fuel cells.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics-Switzerland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ceramics6020073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Finely dispersed (CeO2)1−x(Sm2O3)x (x = 0.05, 0.10, 0.20) and (CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25) powders were synthesized via liquid-phase techniques based on the co-precipitation of hydroxides and were used to obtain ceramic materials comprising fluorite-like solid solutions with CSR in the range 69–88 nm (upon annealing at 1300 °C) and open porosity in the range 0.6–6.2%. The physicochemical properties of the synthesized materials were comparatively characterized. In general, the prepared materials were found to possess a mixed type of electrical conductivity, but in the medium-temperature range, the ionic component was predominant (ion transfer numbers ti = 0.93–0.73 at 300–700 °C). The highest ionic conductivity was observed for CeO2-based samples containing 20 mol.% Sm2O3 (σ700°C = 3.3 × 10−2 S/cm) and 15 mol.% Nd2O3 (σ700°C = 0.48 × 10−2 S/cm) was in the temperature range 500–700 °C. The physicochemical properties (density, open porosity, type and mechanism of electrical conductivity) of the obtained ceramic materials make them promising as solid oxide electrolytes for medium temperature fuel cells.