A non-reference detection method of the external ultrasonic liquid level switch using the PZT

IF 0.6 Q4 ENGINEERING, MECHANICAL
Bin Liu, Y. Xiao, Li Wang, Wenjuan Wang, Jian Hu
{"title":"A non-reference detection method of the external ultrasonic liquid level switch using the PZT","authors":"Bin Liu, Y. Xiao, Li Wang, Wenjuan Wang, Jian Hu","doi":"10.21595/jme.2023.23119","DOIUrl":null,"url":null,"abstract":"Oil tank level is an important control parameter in oil depot management. According to the principle that the liquid in the oil tank can absorb the guided wave propagation energy in the tank wall, this paper studied a non-reference detection method of external ultrasonic liquid level switch based on the signal energy change value between the current and the previously liquid level detection signal. The experimental results show that the ultrasonic guided wave with the center frequency of 30 kHz is sensitive and low misjudgment to liquid level detection. According to the experimental setup, the liquid level judgment threshold is set to 0.9890. The influence of the liquid on the guided wave propagation in the tank wall decreases with the frequency of the guided wave increase. Finally, the effectiveness of the proposed method is verified on a diesel oil tank. The research of this paper provides a method for the research of oil tank external liquid level switch technology, and provides an idea for the research of oil tank liquid level measurement based on ultrasonic guided wave.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Measurements in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/jme.2023.23119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oil tank level is an important control parameter in oil depot management. According to the principle that the liquid in the oil tank can absorb the guided wave propagation energy in the tank wall, this paper studied a non-reference detection method of external ultrasonic liquid level switch based on the signal energy change value between the current and the previously liquid level detection signal. The experimental results show that the ultrasonic guided wave with the center frequency of 30 kHz is sensitive and low misjudgment to liquid level detection. According to the experimental setup, the liquid level judgment threshold is set to 0.9890. The influence of the liquid on the guided wave propagation in the tank wall decreases with the frequency of the guided wave increase. Finally, the effectiveness of the proposed method is verified on a diesel oil tank. The research of this paper provides a method for the research of oil tank external liquid level switch technology, and provides an idea for the research of oil tank liquid level measurement based on ultrasonic guided wave.
一种基于压电陶瓷的外置超声液位开关的非参考检测方法
油库液位是油库管理中的一个重要控制参数。根据油罐内液体能够吸收导波在油罐壁上传播能量的原理,本文研究了一种基于当前与先前液位检测信号之间的信号能量变化值的外超声液位开关非参考检测方法。实验结果表明,中心频率为30 kHz的超声导波对液位检测灵敏度高,误判率低。根据实验设置,液位判断阈值设置为0.9890。液体对导波在槽壁上传播的影响随导波频率的增加而减小。最后,在一个柴油油箱上验证了该方法的有效性。本文的研究为油罐外液位开关技术的研究提供了一种方法,为基于超声导波的油罐液位测量研究提供了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Measurements in Engineering
Journal of Measurements in Engineering ENGINEERING, MECHANICAL-
CiteScore
2.00
自引率
6.20%
发文量
16
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信