{"title":"An obstruction to lifting to characteristic 0","authors":"H. Esnault, V. Srinivas, J. Stix","doi":"10.14231/ag-2023-011","DOIUrl":null,"url":null,"abstract":"We introduce a new obstruction to lifting smooth proper varieties in characteristic $p>0$ to characteristic $0$. It is based on Grothendieck's specialization homomorphism and the resulting discrete finiteness properties of \\'etale fundamental groups.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2023-011","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
We introduce a new obstruction to lifting smooth proper varieties in characteristic $p>0$ to characteristic $0$. It is based on Grothendieck's specialization homomorphism and the resulting discrete finiteness properties of \'etale fundamental groups.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.