Central limit theorem for bifurcating markov chains under L2-ergodic conditions

Pub Date : 2022-06-15 DOI:10.1017/apr.2022.3
S. V. Bitseki Penda, Jean-François Delmas
{"title":"Central limit theorem for bifurcating markov chains under L2-ergodic conditions","authors":"S. V. Bitseki Penda, Jean-François Delmas","doi":"10.1017/apr.2022.3","DOIUrl":null,"url":null,"abstract":"Abstract Bifurcating Markov chains (BMCs) are Markov chains indexed by a full binary tree representing the evolution of a trait along a population where each individual has two children. We provide a central limit theorem for additive functionals of BMCs under \n$L^2$\n -ergodic conditions with three different regimes. This completes the pointwise approach developed in a previous work. As an application, we study the elementary case of a symmetric bifurcating autoregressive process, which justifies the nontrivial hypothesis considered on the kernel transition of the BMCs. We illustrate in this example the phase transition observed in the fluctuations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2022.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Bifurcating Markov chains (BMCs) are Markov chains indexed by a full binary tree representing the evolution of a trait along a population where each individual has two children. We provide a central limit theorem for additive functionals of BMCs under $L^2$ -ergodic conditions with three different regimes. This completes the pointwise approach developed in a previous work. As an application, we study the elementary case of a symmetric bifurcating autoregressive process, which justifies the nontrivial hypothesis considered on the kernel transition of the BMCs. We illustrate in this example the phase transition observed in the fluctuations.
分享
查看原文
l2遍历条件下分岔马尔可夫链的中心极限定理
摘要分支马尔可夫链(BMC)是由一个完整的二叉树索引的马尔可夫链,表示一个特征沿着一个群体的进化,其中每个个体有两个孩子。我们给出了具有三种不同状态的$L^2$-遍历条件下BMC的可加泛函的中心极限定理。这就完成了之前工作中开发的逐点方法。作为一个应用,我们研究了对称分叉自回归过程的基本情况,这证明了关于BMC的核跃迁的非平凡假设是正确的。我们在这个例子中说明了在波动中观察到的相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信