Site-Directed Mutagenesis – A Chance to Meet Environmental Challenges and Provide Healthy Food for People or an Unacceptable Hazard to Humans, Animals, and the Environment. Consequences of the European Court of Justice Judgment in Case C-528/16
{"title":"Site-Directed Mutagenesis – A Chance to Meet Environmental Challenges and Provide Healthy Food for People or an Unacceptable Hazard to Humans, Animals, and the Environment. Consequences of the European Court of Justice Judgment in Case C-528/16","authors":"L. Michalczuk","doi":"10.2478/johr-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract One of the EU's strategic goals is to reduce the environmental and climate footprint of the EU food system and strengthen its resilience, while ensuring food security for European citizens. Thus, the EU Farm to Fork strategy, which is one of the central pillars of the European Green Deal, set ambitious targets for 2030 to reduce pesticide use in agriculture by 50% and fertilizers use by 20%, with a concomitant 50% reduction of nutrient leakage to surface and groundwater. Additionally, it is recommended that at least 25% of the EU agricultural land shall be kept under organic farming. These goals are far-reaching, but several recent studies indicate that implementing them without significant progress in research and innovation (R & I) may result in a yield decrease by up to 30%, depending on the crop, and an increase in the price of agricultural commodities by up to 18%. Especially affected would be horticulture due to its high dependence on plant protection against pests and diseases. Therefore, the studies recommend accelerating plant breeding in order to produce new plant cultivars genetically resistant to pests and diseases and better equipped to cope with abiotic stresses like limited nutrition and water deficit. The progress in classical plant breeding is a lengthy process. It is especially slow in the case of woody species, like most fruit plants, due to their long juvenile periods and limited genetic variance. Recent advances in functional genomics, bioinformatics, and molecular methods provided tools that speed up the breeding process significantly. Several site-directed mutation technologies allow modifying a specific gene at a predefined site, by deletion or insertion of single or multiple nucleotides, without affecting off-target genes. Several valuable cultivars have been bred so far using these methods, and a large number of others are under trials. However, their release will be severely impeded by the decision of the Court of Justice of the European Union, dated 25 July 2018, that the release of organisms obtained by site-specific mutations, as opposed to organisms obtained by induced random mutation, is controlled by Directive 2001/18/EC2 on genetically modified organisms. This paper reviews the new generation breeding techniques, especially site-directed mutagenesis, and their benefits as well as potential hazards to consumers and the environment.","PeriodicalId":16065,"journal":{"name":"Journal of Horticultural Research","volume":"30 1","pages":"1 - 12"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Horticultural Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/johr-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract One of the EU's strategic goals is to reduce the environmental and climate footprint of the EU food system and strengthen its resilience, while ensuring food security for European citizens. Thus, the EU Farm to Fork strategy, which is one of the central pillars of the European Green Deal, set ambitious targets for 2030 to reduce pesticide use in agriculture by 50% and fertilizers use by 20%, with a concomitant 50% reduction of nutrient leakage to surface and groundwater. Additionally, it is recommended that at least 25% of the EU agricultural land shall be kept under organic farming. These goals are far-reaching, but several recent studies indicate that implementing them without significant progress in research and innovation (R & I) may result in a yield decrease by up to 30%, depending on the crop, and an increase in the price of agricultural commodities by up to 18%. Especially affected would be horticulture due to its high dependence on plant protection against pests and diseases. Therefore, the studies recommend accelerating plant breeding in order to produce new plant cultivars genetically resistant to pests and diseases and better equipped to cope with abiotic stresses like limited nutrition and water deficit. The progress in classical plant breeding is a lengthy process. It is especially slow in the case of woody species, like most fruit plants, due to their long juvenile periods and limited genetic variance. Recent advances in functional genomics, bioinformatics, and molecular methods provided tools that speed up the breeding process significantly. Several site-directed mutation technologies allow modifying a specific gene at a predefined site, by deletion or insertion of single or multiple nucleotides, without affecting off-target genes. Several valuable cultivars have been bred so far using these methods, and a large number of others are under trials. However, their release will be severely impeded by the decision of the Court of Justice of the European Union, dated 25 July 2018, that the release of organisms obtained by site-specific mutations, as opposed to organisms obtained by induced random mutation, is controlled by Directive 2001/18/EC2 on genetically modified organisms. This paper reviews the new generation breeding techniques, especially site-directed mutagenesis, and their benefits as well as potential hazards to consumers and the environment.