{"title":"Numerical Radius of Bounded Operators with ℓp-Norm","authors":"Sadaf Fakri Moghaddam, A. Mirmostafaee","doi":"10.2478/tmmp-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract We study the numerical radius of bounded operators on direct sum of a family of Hilbert spaces with respect to the ℓp-norm, where 1 ≤ p ≤∞. We propose a new method which enables us to prove validity of many inequalities on numerical radius of bounded operators on Hilbert spaces when the underling space is a direct sum of Hilbert spaces with ℓp-norm, where 1 ≤ p ≤ 2. We also provide an example to show that some known results on numerical radius are not true for a space that is the set of bounded operators on ℓp-sum of Hilbert spaces where 2","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"81 1","pages":"155 - 164"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We study the numerical radius of bounded operators on direct sum of a family of Hilbert spaces with respect to the ℓp-norm, where 1 ≤ p ≤∞. We propose a new method which enables us to prove validity of many inequalities on numerical radius of bounded operators on Hilbert spaces when the underling space is a direct sum of Hilbert spaces with ℓp-norm, where 1 ≤ p ≤ 2. We also provide an example to show that some known results on numerical radius are not true for a space that is the set of bounded operators on ℓp-sum of Hilbert spaces where 2