{"title":"Machine Learning-based forecasting models for COVID-19 spread in Algeria","authors":"Mohamed Sedik Chebout, Oussama Kabour","doi":"10.3233/mas-220013","DOIUrl":null,"url":null,"abstract":"Currently, the Algerian health system is facing the fourth wave of COVID-19 in which the number of recovered cases grows exponentially each day due to the COVID-19 Omicron variant. According to the Algerian National Institute of Public Health (ANIPH), it was reported 168 668 confirmed cases and 4 189 deaths till 29 July, 2021. In this work, we aim to utilize supervised Machine Learning (ML) based models in an attempt to forecast the future trend of the disease in Algeria. To that end, we use three forecasting models: Facebook Prophet, LSTM and ARIMA. Forecasting results of the 90 future days are provided. The used dataset contains the confirmed and death cases collected from the daily Epidemiological Situation (ES), published by ANIPH, from 19 April 2020 to 29 July 2021. The forecasting accuracy of the models are assessed and compared using several statistical assessment criteria. The results show that ARIMA outperforms Facebook Prophet and LSTM in the case of confirmed cases. However, LSTM shows best performance in the case of death cases. This study shows clearly that the pandemic spread is still in progress and protection measures like contact restriction and lockdown should be strictly applied especially with the appearance of the COVID-19 Delta and Omicron variants.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-220013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, the Algerian health system is facing the fourth wave of COVID-19 in which the number of recovered cases grows exponentially each day due to the COVID-19 Omicron variant. According to the Algerian National Institute of Public Health (ANIPH), it was reported 168 668 confirmed cases and 4 189 deaths till 29 July, 2021. In this work, we aim to utilize supervised Machine Learning (ML) based models in an attempt to forecast the future trend of the disease in Algeria. To that end, we use three forecasting models: Facebook Prophet, LSTM and ARIMA. Forecasting results of the 90 future days are provided. The used dataset contains the confirmed and death cases collected from the daily Epidemiological Situation (ES), published by ANIPH, from 19 April 2020 to 29 July 2021. The forecasting accuracy of the models are assessed and compared using several statistical assessment criteria. The results show that ARIMA outperforms Facebook Prophet and LSTM in the case of confirmed cases. However, LSTM shows best performance in the case of death cases. This study shows clearly that the pandemic spread is still in progress and protection measures like contact restriction and lockdown should be strictly applied especially with the appearance of the COVID-19 Delta and Omicron variants.
期刊介绍:
Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.