Generators for the cohomology ring of the moduli of 1-dimensional sheaves on $\mathbb{P}^2$

IF 1.2 1区 数学 Q1 MATHEMATICS
Weite Pi, Junliang Shen
{"title":"Generators for the cohomology ring of the moduli of 1-dimensional sheaves on $\\mathbb{P}^2$","authors":"Weite Pi, Junliang Shen","doi":"10.14231/ag-2023-017","DOIUrl":null,"url":null,"abstract":"We explore the structure of the cohomology ring of the moduli space of stable 1-dimensional sheaves on $\\mathbb{P}^2$ of any degree. We obtain a minimal set of tautological generators, which implies an optimal generation result for both the cohomology and the Chow ring of the moduli space. Our approach is through a geometric study of tautological relations.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2023-017","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We explore the structure of the cohomology ring of the moduli space of stable 1-dimensional sheaves on $\mathbb{P}^2$ of any degree. We obtain a minimal set of tautological generators, which implies an optimal generation result for both the cohomology and the Chow ring of the moduli space. Our approach is through a geometric study of tautological relations.
$\mathbb{P}^2$上一维轴模的上同环的生成器
研究了任意次$\mathbb{P}^2$上稳定的一维木条模空间上同调环的结构。我们得到了模空间上同调和Chow环的最优生成结果的最小同调生成集。我们的方法是通过对同义关系的几何研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信