Graph toughness from Laplacian eigenvalues

Q3 Mathematics
Xiaofeng Gu, W. Haemers
{"title":"Graph toughness from Laplacian eigenvalues","authors":"Xiaofeng Gu, W. Haemers","doi":"10.5802/alco.197","DOIUrl":null,"url":null,"abstract":"The toughness t(G) of a graph G = (V, E) is defined as t(G) = min { |S| c(G−S) } , in which the minimum is taken over all S ⊂ V such that G − S is disconnected, where c(G − S) denotes the number of components of G − S. We present two tight lower bounds for t(G) in terms of the Laplacian eigenvalues and provide strong support for a conjecture for a better bound which, if true, implies both bounds, and improves and generalizes known bounds by Alon, Brouwer, and the first author. As applications, several new results on perfect matchings, factors and walks from Laplacian eigenvalues are obtained, which leads to a conjecture about Hamiltonicity and Laplacian eigenvalues.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

Abstract

The toughness t(G) of a graph G = (V, E) is defined as t(G) = min { |S| c(G−S) } , in which the minimum is taken over all S ⊂ V such that G − S is disconnected, where c(G − S) denotes the number of components of G − S. We present two tight lower bounds for t(G) in terms of the Laplacian eigenvalues and provide strong support for a conjecture for a better bound which, if true, implies both bounds, and improves and generalizes known bounds by Alon, Brouwer, and the first author. As applications, several new results on perfect matchings, factors and walks from Laplacian eigenvalues are obtained, which leads to a conjecture about Hamiltonicity and Laplacian eigenvalues.
拉普拉斯特征值的图韧性
韧性t (G)的图G = (V, E)的定义是t (G) =分钟{| S | c (G−)},最低的接管所有的S⊂V G−年代是断开连接,其中c (G−S)表示数量的组件G−S .我们现在两个紧下界t (G)的拉普拉斯算子特征值和提供强有力支持猜想到一个更好的约束,如果情况属实,意味着这两个范围,改进和推广了已知边界的阿龙,这和第一作者。作为应用,得到了关于拉普拉斯特征值的完美匹配、因子和行走的几个新结果,从而引出了关于拉普拉斯特征值和哈密顿性的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信