Paramagnetic relaxivity of delocalized long-lived states of protons in chains of CH2 groups.

Q3 Physics and Astronomy
Magnetic resonance (Gottingen, Germany) Pub Date : 2023-02-16 eCollection Date: 2023-01-01 DOI:10.5194/mr-4-47-2023
Aiky Razanahoera, Anna Sonnefeld, Geoffrey Bodenhausen, Kirill Sheberstov
{"title":"Paramagnetic relaxivity of delocalized long-lived states of protons in chains of CH<sub>2</sub> groups.","authors":"Aiky Razanahoera, Anna Sonnefeld, Geoffrey Bodenhausen, Kirill Sheberstov","doi":"10.5194/mr-4-47-2023","DOIUrl":null,"url":null,"abstract":"<p><p>Long-lived states (LLSs) have lifetimes <math><mrow><msub><mi>T</mi><mi>LLS</mi></msub></mrow></math> that can be much longer than longitudinal relaxation times <math><mrow><msub><mi>T</mi><mn>1</mn></msub></mrow></math>. In molecules containing several geminal pairs of protons in neighboring CH<math><msub><mi></mi><mn>2</mn></msub></math> groups, it has been shown that <i>delocalized</i> LLSs can be excited by converting magnetization into imbalances between the populations of singlet and triplet states of each pair. Since the empirical yield of the conversion and reconversion of observable magnetization into LLSs and back is on the order of 10 % if one uses spin-lock induced crossing (SLIC), it would be desirable to boost the sensitivity by dissolution dynamic nuclear polarization (d-DNP). To enhance the magnetization of nuclear spins by d-DNP, the analytes must be mixed with radicals such as 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL). After dissolution, these radicals lead to an undesirable paramagnetic relaxation enhancement (PRE) which shortens not only the longitudinal relaxation times <math><mrow><msub><mi>T</mi><mn>1</mn></msub></mrow></math> but also the lifetimes <math><mrow><msub><mi>T</mi><mi>LLS</mi></msub></mrow></math> of LLSs. It is shown in this work that PRE by TEMPOL is less deleterious for LLSs than for longitudinal magnetization for four different molecules: 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), homotaurine, taurine, and acetylcholine. The relaxivities <math><mrow><msub><mi>r</mi><mi>LLS</mi></msub></mrow></math> (i.e., the slopes of the relaxation rate constants <math><mrow><msub><mi>R</mi><mi>LLS</mi></msub></mrow></math> as a function of the radical concentration) are 3 to 5 times smaller than the relaxivities <math><mrow><msub><mi>r</mi><mn>1</mn></msub></mrow></math> of longitudinal magnetization. Partial delocalization of the LLSs across neighboring CH<math><msub><mi></mi><mn>2</mn></msub></math> groups may decrease this advantage, but in practice, this effect was observed to be small, for example, when comparing taurine containing two CH<math><msub><mi></mi><mn>2</mn></msub></math> groups and homotaurine with three CH<math><msub><mi></mi><mn>2</mn></msub></math> groups. Regardless of whether the LLSs are delocalized or not, it is shown that PRE should not be a major problem for experiments combining d-DNP and LLSs, provided the concentration of paramagnetic species after dissolution does not exceed 1 mM, a condition that is readily fulfilled in typical d-DNP experiments. In bullet d-DNP experiments however, it may be necessary to decrease the concentration of TEMPOL or to add ascorbate for chemical reduction.</p>","PeriodicalId":93333,"journal":{"name":"Magnetic resonance (Gottingen, Germany)","volume":" ","pages":"47-56"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583270/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance (Gottingen, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/mr-4-47-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Long-lived states (LLSs) have lifetimes TLLS that can be much longer than longitudinal relaxation times T1. In molecules containing several geminal pairs of protons in neighboring CH2 groups, it has been shown that delocalized LLSs can be excited by converting magnetization into imbalances between the populations of singlet and triplet states of each pair. Since the empirical yield of the conversion and reconversion of observable magnetization into LLSs and back is on the order of 10 % if one uses spin-lock induced crossing (SLIC), it would be desirable to boost the sensitivity by dissolution dynamic nuclear polarization (d-DNP). To enhance the magnetization of nuclear spins by d-DNP, the analytes must be mixed with radicals such as 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL). After dissolution, these radicals lead to an undesirable paramagnetic relaxation enhancement (PRE) which shortens not only the longitudinal relaxation times T1 but also the lifetimes TLLS of LLSs. It is shown in this work that PRE by TEMPOL is less deleterious for LLSs than for longitudinal magnetization for four different molecules: 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), homotaurine, taurine, and acetylcholine. The relaxivities rLLS (i.e., the slopes of the relaxation rate constants RLLS as a function of the radical concentration) are 3 to 5 times smaller than the relaxivities r1 of longitudinal magnetization. Partial delocalization of the LLSs across neighboring CH2 groups may decrease this advantage, but in practice, this effect was observed to be small, for example, when comparing taurine containing two CH2 groups and homotaurine with three CH2 groups. Regardless of whether the LLSs are delocalized or not, it is shown that PRE should not be a major problem for experiments combining d-DNP and LLSs, provided the concentration of paramagnetic species after dissolution does not exceed 1 mM, a condition that is readily fulfilled in typical d-DNP experiments. In bullet d-DNP experiments however, it may be necessary to decrease the concentration of TEMPOL or to add ascorbate for chemical reduction.

CH2基团链中质子离域长寿命态的顺磁弛豫性
摘要长寿命态(LLS)的寿命TLLS可以比纵向弛豫时间T1长得多。在相邻CH2基团中含有几个成对质子的分子中,已经表明离域LLS可以通过将磁化转化为每对质子的单线态和三线态布居之间的不平衡来激发。由于可观测磁化转换和再转换为LLSs和back的经验产率约为10 % 如果使用自旋锁诱导交叉(SLIC),则希望通过溶解动态核极化(d-DNP)来提高灵敏度。为了增强d-DNP对核自旋的磁化,分析物必须与4-羟基-2,2,6,6-四甲基哌啶-1-氧基(TEMPOL)等自由基混合。溶解后,这些自由基会导致不希望的顺磁弛豫增强(PRE),这不仅缩短了LLS的纵向弛豫时间T1,还缩短了其寿命TLLS。在这项工作中,TEMPOL的PRE对LLSs的危害小于对四种不同分子的纵向磁化:2,2-二甲基-2-硅戊烷-5-磺酸盐(DSS)、同牛磺酸、牛磺酸和乙酰胆碱。弛豫率rLLS(即,作为自由基浓度的函数的弛豫速率常数rLLS的斜率)比纵向磁化的弛豫率r1小3到5倍。LLSs在相邻CH2基团之间的部分离域可能会降低这种优势,但在实践中,观察到这种影响很小,例如,当比较含有两个CH2基团的牛磺酸和含有三个CH2的同源金时。不管LLS是否离域,研究表明,如果溶解后顺磁性物质的浓度不超过1,PRE不应该是结合d-DNP和LLS的实验的主要问题 mM,这是在典型的d-DNP实验中容易满足的条件。然而,在完整的d-DNP实验中,可能有必要降低TEMPOL的浓度或添加抗坏血酸盐进行化学还原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信