{"title":"Evolution of microstructure and strain field by precipitation during early ageing of Al–Si–Mg–Cu alloy","authors":"Chenyang Zhu, L. Dong, Bin Hu, Bing Chen","doi":"10.1080/09500839.2021.1873446","DOIUrl":null,"url":null,"abstract":"ABSTRACT The evolution of microstructure and the variation of strain field induced by precipitation in Al–Si–Mg–Cu alloy with high copper content during early ageing is characterised by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and geometric phase analysis (GPA) calculations. The basic building blocks for GP zones and step-shaped edges around subsequent precipitation are characterised. Incorporation of solute atoms, namely Si, Mg and Cu, accounts for the expansion of GP zones with core–shell structure and further precipitation transformation. The induced strain field rises as the ageing time increases and structural transformation proceeds, which results in a hardening of the sample.","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"101 1","pages":"143 - 153"},"PeriodicalIF":1.2000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09500839.2021.1873446","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09500839.2021.1873446","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT The evolution of microstructure and the variation of strain field induced by precipitation in Al–Si–Mg–Cu alloy with high copper content during early ageing is characterised by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and geometric phase analysis (GPA) calculations. The basic building blocks for GP zones and step-shaped edges around subsequent precipitation are characterised. Incorporation of solute atoms, namely Si, Mg and Cu, accounts for the expansion of GP zones with core–shell structure and further precipitation transformation. The induced strain field rises as the ageing time increases and structural transformation proceeds, which results in a hardening of the sample.
期刊介绍:
Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate.
Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.