{"title":"Weighted Green functions for complex Hessian operators","authors":"Hadhami Elaini, A. Zeriahi","doi":"10.4064/ap220509-27-10","DOIUrl":null,"url":null,"abstract":"Let $1\\leq m\\leq n$ be two fixed integers. Let $\\Omega \\Subset \\mathbb C^n$ be a bounded $m$-hyperconvex domain and $\\mathcal A \\subset \\Omega \\times ]0,+ \\infty[$ a finite set of weighted poles. We define and study properties of the $m$-subharmonic Green function of $\\Omega$ with prescribed behaviour near the weighted set $A$. In particular we prove uniform continuity of the exponential Green function in both variables $(z,\\mathcal A)$ in the metric space $\\bar \\Omega \\times \\mathcal F$, where $\\mathcal F$ is a suitable family of sets of weighted poles in $\\Omega \\times ]0,+ \\infty[$ endowed with the Hausdorff distance. Moreover we give a precise estimates on its modulus of continuity. Our results generalize and improve previous results concerning the pluricomplex Green function du to P. Lelong.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap220509-27-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let $1\leq m\leq n$ be two fixed integers. Let $\Omega \Subset \mathbb C^n$ be a bounded $m$-hyperconvex domain and $\mathcal A \subset \Omega \times ]0,+ \infty[$ a finite set of weighted poles. We define and study properties of the $m$-subharmonic Green function of $\Omega$ with prescribed behaviour near the weighted set $A$. In particular we prove uniform continuity of the exponential Green function in both variables $(z,\mathcal A)$ in the metric space $\bar \Omega \times \mathcal F$, where $\mathcal F$ is a suitable family of sets of weighted poles in $\Omega \times ]0,+ \infty[$ endowed with the Hausdorff distance. Moreover we give a precise estimates on its modulus of continuity. Our results generalize and improve previous results concerning the pluricomplex Green function du to P. Lelong.