{"title":"Finite difference scheme for a non-linear subdiffusion problem with a fractional derivative along the trajectory of motion","authors":"A. Lapin, V. Shaydurov, R. Yanbarisov","doi":"10.1515/rnam-2023-0003","DOIUrl":null,"url":null,"abstract":"Abstract The article is devoted to the construction and study of a finite-difference scheme for a one-dimensional diffusion–convection equation with a fractional derivative with respect to the characteristic of the convection operator. It develops the previous results of the authors from [5, 6] in the following ways: the differential equation contains a fractional derivative of variable order along the characteristics of the convection operator and a quasi-linear diffusion operator; a new accuracy estimate is proved, which singles out the dependence of the accuracy of mesh scheme on the curvature of the characteristics.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2023-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The article is devoted to the construction and study of a finite-difference scheme for a one-dimensional diffusion–convection equation with a fractional derivative with respect to the characteristic of the convection operator. It develops the previous results of the authors from [5, 6] in the following ways: the differential equation contains a fractional derivative of variable order along the characteristics of the convection operator and a quasi-linear diffusion operator; a new accuracy estimate is proved, which singles out the dependence of the accuracy of mesh scheme on the curvature of the characteristics.