Laura Rodriguez‐Gonzalez, E. García-Campos, Angela B. Martin, M. Díaz-Raviña, M. Arias-Estévez, D. Fernández-Calviño, V. Santás-Miguel
{"title":"Microbial Communities as Affected by Clarithromycin Addition in Four Acid Soils (NW Iberian Peninsula)","authors":"Laura Rodriguez‐Gonzalez, E. García-Campos, Angela B. Martin, M. Díaz-Raviña, M. Arias-Estévez, D. Fernández-Calviño, V. Santás-Miguel","doi":"10.3389/sjss.2023.11319","DOIUrl":null,"url":null,"abstract":"A laboratory experiment was carried out to investigate the response of the microbial communities in acid agricultural soils located in the NW Iberian Peninsula to the presence of clarithromycin. Four soils, with different organic C content and similar pH, and seven different concentrations of clarithromycin (0.49, 1.95, 7.81, 31.25, 125, 500 and 2,000 mg kg−1 of soil) were used, and microbial estimates were made after 8 and 42 incubation days. The phospholipid fatty acids (PLFA) technique was used to estimate the total microbial biomass and biomass of specific microbial groups as well as the microbial community structure (PLFA pattern). The microbial biomass (total and specific groups) was different in the four studied soils, the lowest values being exhibited by soils with the lowest organic C. The antibiotic addition showed a positive effect on microbial biomass (total and specific groups), especially at the highest dose; the effect being similar or even more accentuated with time passed after the addition (42 days ≥8 days). Principal component analysis (PCA) of the PLFA data carried out with the whole data set showed that the main determining factors of the microbial structure followed the order: soil > time incubation ≥ antibiotic dose. When the PCA was performed individually for each incubation time, the results indicated that microbial communities of the four soils were different. Likewise, for each soil, different microbial communities were observed depending on antibiotic concentration. The microbial biomass and PLFA pattern data were coincidentally showing that the clarithromycin addition favored fungi and G− bacteria more that bacteria and G+ bacteria; the effect being dose-dependent. Our data (microbial biomass, PLFA pattern) also demonstrated that the effect of clarithromycin addition on microbial communities in these four acid agricultural soils persisted even after 42 incubation days.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/sjss.2023.11319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
A laboratory experiment was carried out to investigate the response of the microbial communities in acid agricultural soils located in the NW Iberian Peninsula to the presence of clarithromycin. Four soils, with different organic C content and similar pH, and seven different concentrations of clarithromycin (0.49, 1.95, 7.81, 31.25, 125, 500 and 2,000 mg kg−1 of soil) were used, and microbial estimates were made after 8 and 42 incubation days. The phospholipid fatty acids (PLFA) technique was used to estimate the total microbial biomass and biomass of specific microbial groups as well as the microbial community structure (PLFA pattern). The microbial biomass (total and specific groups) was different in the four studied soils, the lowest values being exhibited by soils with the lowest organic C. The antibiotic addition showed a positive effect on microbial biomass (total and specific groups), especially at the highest dose; the effect being similar or even more accentuated with time passed after the addition (42 days ≥8 days). Principal component analysis (PCA) of the PLFA data carried out with the whole data set showed that the main determining factors of the microbial structure followed the order: soil > time incubation ≥ antibiotic dose. When the PCA was performed individually for each incubation time, the results indicated that microbial communities of the four soils were different. Likewise, for each soil, different microbial communities were observed depending on antibiotic concentration. The microbial biomass and PLFA pattern data were coincidentally showing that the clarithromycin addition favored fungi and G− bacteria more that bacteria and G+ bacteria; the effect being dose-dependent. Our data (microbial biomass, PLFA pattern) also demonstrated that the effect of clarithromycin addition on microbial communities in these four acid agricultural soils persisted even after 42 incubation days.
期刊介绍:
The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.