{"title":"Automated Robotic Systems for Nondestructive Testing of Aerospace Composite Structures","authors":"Fetzer Barry","doi":"10.32548/2021.ME-04224","DOIUrl":null,"url":null,"abstract":"Automated robotic systems are becoming prevalent in many aerospace manufacturing applications, such as laser ablation, sanding, drilling, final assembly, and painting. There are significant advantages to using automated robotic systems for inspection purposes as well: versatility, speed, and repeatability, to name a few. This paper explores using an automated robotic system for the nondestructive testing (NDT) of composite parts. It has a focus on phased array ultrasonic testing (PAUT) but highlights modularity principles in the system that are not coupled to a single inspection method. Because of the articulation inherent in multi-axis robots, inspections of contoured structures become straightforward if the system modules are designed correctly. Examples of such modules, and their advantages when interfaced to an automated robotic system, are included in this paper. It is the author’s intent to show how these system modules might maximize robot capabilities for a broad range of aerospace inspections while keeping a simplistic design that is modular, fast, and straightforward to use. When compared to other aerospace manufacturing processes already using automated robotic systems, the use of robots for NDT seems not only prudent but a favorable goal. This paper offers practical building blocks for achieving this goal.","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/2021.ME-04224","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Automated robotic systems are becoming prevalent in many aerospace manufacturing applications, such as laser ablation, sanding, drilling, final assembly, and painting. There are significant advantages to using automated robotic systems for inspection purposes as well: versatility, speed, and repeatability, to name a few. This paper explores using an automated robotic system for the nondestructive testing (NDT) of composite parts. It has a focus on phased array ultrasonic testing (PAUT) but highlights modularity principles in the system that are not coupled to a single inspection method. Because of the articulation inherent in multi-axis robots, inspections of contoured structures become straightforward if the system modules are designed correctly. Examples of such modules, and their advantages when interfaced to an automated robotic system, are included in this paper. It is the author’s intent to show how these system modules might maximize robot capabilities for a broad range of aerospace inspections while keeping a simplistic design that is modular, fast, and straightforward to use. When compared to other aerospace manufacturing processes already using automated robotic systems, the use of robots for NDT seems not only prudent but a favorable goal. This paper offers practical building blocks for achieving this goal.
期刊介绍:
Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.